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Abstract

The first price auction is the auction procedure awarding the item to the highest bidder
at the price equal to his bid. Much attention has been devoted to the two bidder case or to the
symmetric case where the bidders' valuations are identically and independently distributed.
We consider the general case where the valuations' distributions may be different.
Furthermore, we allow an arbitrary number of bidders as well as mixed strategies. We show
that every Bayesian equilibrium is an “essentially” pure equilibrium formed by bid functions
whose inverses are solutions of a system of differential equations with boundary conditions.
We then prove the existence of a Bayesian equilibrium. We prove the uniqueness of the
equilibrium when the valuation distributions have a mass point at the lower extremity of the
support. When every bidder's valuation distribution is one of two atomless distributions, we
give assumptions under which the equilibrium is unique. The n-tuples of distributions that
result from symmetric settings after some bidders have colluded satisfy these assumptions.
We establish inequalities between equilibrium strategies when relations of stochastic
dominance exist between valuation distributions.



FIRST PRICE AUCTION

IN THE ASYMMETRIC N BIDDER CASE.

1.Introduction.

We study the first price auction in the general asymmetric framework with and without
mandatory participation. An indivisible item is offered for sale to n > 2 bidders. We denote
bidder 1's valuation by vy, bidder 2's valuation by v, etc .... We assume that the bidders'
valuations vy, vy, ..., Vv, are chosen randomly by Nature according to commonly known
independent probability measures Fy, Fo, ..., F, (respectively). Only bidder i is then
informed of v;. If at least one bidder takes part in the auction, the item goes to the highest
bidder who has to pay the price equal to his bid.

Most of the literature in this "independent private value model” has dealt with the
symmetric case where the measures Fy, F, ..., F,, are equal to the same measure, or with the
case where there are only two bidders. However, asymmetry arises naturally in many
examples. Consider a first price auction with more than two bidders where bidder j is reputed
to be very interested in the objects of the same style as the object being sold. The other
bidders, on the other hand, are reputed to have only little interest in such objects. In this
example, the measure F; has to give more probability to high valuations than F; does, for
i #].

Riley and Samuelson (1981) prove the existence of an equilibrium and give a
mathematical expression for the equilibrium strategy in the symmetric case where the
measures Fy, ..., F, are equal to the same absolutely continuous measure?. In the asymmetric
case, Griesmer, Levitan and Shubik (1967) consider a first price auction with two bidders
whose valuations are uniformly distributed over possibly different intervals. Already Vickrey
(1961) analyzed the asymmetric two bidder case where one bidder knows the other bidder's
valuation with certainty. Plum (1992) gives necessary and sufficient conditions of existence
of a pure equilibrium in the two bidder case. Maskin and Riley (25 December 1996) examine
several asymmetric two bidder examples.

The general model with mandatory bidding where the measures F; are required to have
compact supports, but are otherwise arbitrary, has been studied in Lebrun (1996). In this
general case, a Nash equilibrium even in mixed strategies does not always exist®>. However, it
is shown that if the supports of the measures F; have the same minimum and if this minimum
is not a mass point of any of these measures, then there exists a Nash equilibrium. It is
possible to obtain general positive results if the rules of the first price auction game are
modified slightly. The existence theorems in Lebrun (1996) are proved in an indirect way by
approximating the first price auction game by a sequence of games with a finite number of
pure strategies. No characterization of the equilibria is given.



Asymmetric n bidder examples where all bidders except one have the same valuation
probability measure have been numerically examined by Marshall, Meurer, Richard and
Stromquist (1994). More numerical analysis can be found in Li and Riley (1997). Maskin
and Riley (26 December 1996) consider the existence of an equilibrium in the asymmetric n
bidder case by relying on discrete approximations and passing to the limit. They prove the
existence in the cases of valuation measures absolutely continuous everywhere and of
measures with finite supports. Maskin and Riley (November 1994) then study properties and
descriptions of the equilibria when they exist. In Maskin and Riley (November 1994 and 26
December 1996), the uniqueness of the equilibrium is stated in the case of absolutely
continuous measures with possible mass points at the lower extremities of the supports and
density functions whose continuous extensions are striclty positive everywhere.
Unfortunately, in the versions at my disposal the proof of even the case with common support
is not complete*.

In the present paper, we analyze the asymmetric n bidder case where the measures F,
Fo, ..., F,, have their supports equal to the same interval [c , T | and are, either, absolutely
continuous over the whole interval [c , T | or, absolutely continuous over the interval (c , T ]
with mass points at the lower extremity ¢ . This last case can be used to model situations
where the reserve price set by the auctioneer is larger than the lower extremity of the valuation
interval and is not covered by the existence results in Lebrun (1996) concerning the unaltered
first price auction game nor by the results in Maskin and Riley (November 1994 and 26
December 1996). In the atomless case, the continuous extensions of the density functions are
not required to exist at c .

The approach we follow is, in a sense, reverse to and more direct than the approaches
of Lebrun (1996) and Maskin and Riley (November 1994 and 26 December 1996). We first
give a characterization of the equilibrium strategies as solutions of a system of differential
equations with boundary conditions. We then proceed directly from this characterization in
order to obtain the existence and other important properties of the equilibria, such as
uniqueness.

We prove the existence of an equilibrium in the case of voluntary bidding when all
valuation distributions have a mass point at ¢ and in both cases with voluntary and mandatory
bidding when the distributions are atomless. The difficulty of the proofs stems from the
singularity of the differential system at c . We circumvent it by considering the solution of
the differential system as a function of the initial condition at the upper extremity T .

When all distributions have a mass point at the lower extremity ¢ , we prove the
uniqueness of the equilibrium. When every bidder's valuation distribution is one of two
distributions, we give assumptions under which the equilibrium is unique in the atomless case.
The distributions we obtain when we start from a symmetric setting and when several bidders
collude into one cartel satisfy these assumptions. These results can be applied to all examples
studied by Marshall, Meurer, Richard and Stromquist (1994). They can also be applied to
situations where the bidders can be divided into two groups, the bidders of one group being
reputed more interested in the object being auctioned as the bidders of the other. If all
distributions except possibly one are identical, we prove the existence of an equilibrium with
mandatory bidding when ¢ is a mass point of the distributions®.



We establish inequalities that hold between bidders' equilibrium strategies when
relations of stochastic dominance exist between valuation probability distributions. As a
consequence of these results, we show that if two bidders' valuation distributions are equal,
then their equilibrium strategies are equal and the uniqueness of the equilibrium in the
symmetric n bidder case follows from the known uniqueness of the symmetric equilibrium in
this case.

In Section 2, we introduce the model and give necessary and sufficient conditions for a
n-tuple of strategies to be an equilibrium. This characterization is proved in Section 3. We
prove the existence of an equilibrium and investigate some of the properties of the equilibria
in Section 4. Section 5 studies the case where { Fy, ..., F, } = { Gy, Gy }. Section 6
concludes. Details of the proofs and definitions can be found in Appendices 1 to 5.

2.The Model and the Characterization of the Equilibria.

The supports® of the probability measures Fy, Fo, ..., F, are equal to the same interval
c,T],with0 < ¢ < T. For the sake of convenience, we also denote by Fy, Fo, ..., F,
the cumulative distribution functions continuous from the right. We assume that Fy, Fo, ...,
F,, are differentiable over (c , T | and that their derivatives—the density functions fi, o, ...,
f,—are locally bounded away from zero”. In the rest of the paper, this set of assumptions will
be referred to as “the assumptions of Section 2".

In the case with a reserve price r > ¢ , the bidders with valuations not larger than r will
bid as low as possible and will thus behave as if their valuations were equal to r. This case
will then be equivalent to the case where the valuations are distributed over the interval [r, T ],
with the lower extremity r of this interval which is a mass point of the distributions F, Fo, ...,
..

After having observed his valuation v; and if bidding is mandatory or if he has decided
to bid, bidder i has to submit a bid b; € R at least as high as ¢ . We thus assume that ¢ is a
reserve price®. We denote the decision of bidder i of staying out’ by b, = OUT. Bidder i
wins the auction if his bid b; is strictly larger than the bids submitted by the other bidders and
his payoff is equal to (v; —b;). If bidder i stayed out of the auction or if at least one other
bidder has submitted a bid strictly larger than b;, he is not awarded the item and his payoff is
equal to zero. If bidder i and at least one other bidder have submitted the highest bid
( # OUT), then there is a tie which is solved by a fair lottery. If S(by, ..., b,,) is equal to the
set of indices corresponding to the highest bidders, that is, S(by, ..., b,) = {j | 1 < j <
n,b; # OUTandb; > by, foralll < k < n suchthatb, # OUT}andifi € S(by,...,
b,,), the probability that bidder i wins the auction is 1/#S(by, ..., b,). If he wins, his payoff is
again the difference between his valuation and his bid, and if he loses his payoff is equal to
zero. We assume that the bidders are risk neutral. We denote by p;(v;, by, ..., b,) the
expected payoff of bidder i if his valuation is equal to v; and if by, ..., b, are the bids which
have been submitted. Thus, we have

pi(vi:bll---ubn> = 0,ifi ¢ S(bl,,bn)

pi(Vi,bl,...,bn) = (1/#S(b1,,bn)) (V7—bl),|f| < S(bl,,bn)



The function p;(v;, by, ..., b,) is bounded from above. In fact, p;(v;, by, ..., b,)
(T —c ), forallv;in[c,T]andforallby,...,b, in{OUT} U [c, + o0).

IN

A strategy of bidder i tells him what bid probability measure he should use as a
function of his valuation. In Appendix 5, we formally define the strategies as “regular
conditional probability distributions™ (“stochastic kernels" or “transition probability
distributions™). It enables us to consider the expected values of random variables of interest,
such as the bidders' payoffs. For v in [c, T ], we denote by 5;(v, .) the bid probability
distribution, over {OUT} U [c, + oo) in the case of voluntary bidding and [c , + co) in the
case of mandatory bidding, bidder i uses if his valuation is equal to v and if he follows the
strategy ;. We say that a strategy £; is pure if and only if g3;(v, .) is concentrated at one
point, that we denote by (;(v), for all v in [c , T ]. In this case, we identify the strategy 5
with the bid function'® from [c ,T ] to {OUT} U [c, +o0) or [c, + 00), and whose value at
v is equal to g;(v), forall vin [c , T |. A strategy §; of bidder i and the valuation probability
distribution F; determine a probability measure g;xF; over the product [c, T] X
({OUT}U[c, +o0))orfc,T] x [c, 4+ oco) of the set of possible valuations with the set
of possible actions (see Appendix 4). We denote by [3;*F;], the marginal distribution of (;xF;
over the second component space. This marginal distribution should be interpreted as the
“exante"” probability distribution of the bid from bidder i prior to the choice by Nature of
bidder i's valuation.

If bidder 1, ..., bidder n follow the strategies 3y, ..., 3,, respectively, the expected
payoff of bidder i conditional on his valuation being equal to v in [c, T] is given by the
following expression,

(1) fpi(V, bl, ey bn> [ﬁi(v, ) & § (ﬁj*Fj)}] (dbl, (de, dbj)j#i ),

where ® denotes the usual product between measures. Since the function p;(v, by, ..., b,) is
measurable and bounded from above, its integral above always exists in the weak sense. That
is, the integral is equal to a finite number, when the function p;(v, by, ..., b,) is integrable in
the strong sense, or is equal to — cc.

A n-tuple of strategies (5, ..., 3,) form a Bayesian equilibrium if and only if,

Jpi(v, by, .. 0y) [Bilv, ) @ %2 i(ﬁj*':j)}] (db;, (dvj, dbj)jzi ) >
> [pi(v, by, oy b)) [ ® é?éi(ﬂ"*Fj)” (dby, (dvy, db;);zi ),

for all probability measures 1; over the set of possible actions, that is, [c, + oc) or {OUT}
U [c, + o0), for all valuation vin [c , T ] and for all 1 <i < n, with the natural convention
X > — oo, for all x € R. The inequality above requires that the bid probability distribution
Bi(v, .) gives bidder i the highest possible payoff against the other bidders' strategies 3;, j # i,
when his valuation is equal to v. We say that an equilibrium (3, ..., 3,) is pure if and only if
the strategies (3, ..., (3, are pure.



Theorems 1 and 2 below provide a characterization of all Bayesian equilibria.

Theorem 1 (mandatory bidding): Under the assumptions of Section 2, a n-tuple of strategies
(61, ..., Bn) is a Bayesian equilibrium of the first price auction with mandatory bidding if and
only if the strategies are pure, the bid functions are strictly increasing, and there existsc <
n < T such that the inverses oy = 7%, ..., a,, = 3, form a solution over (c , 7] of the
system of differential equations (2) — considered in the domain D = { (b, oy, ..., o) €
R™™ | c,b <a; < T,foralll <i<n}—andsatisfy the boundary conditions (3),

d _ Fi(ag(b)) (~1)(n-2) S
(2) %O‘k(b) - (nflk)fklzak(b)) { (D)~ + 1—21 a(b)—b }'1 < k<n,
£k

(3) a;(n) =T andy(c ) = ¢ ,foralll < i < n.

Theorem 2 (voluntary bidding): Under the assumptions of Section 2, a n-tuple of strategies

(61, ..., Bn) is a Bayesian equilibrium of the first price auction with voluntary bidding if and
only if the strategies (1, ..., (3, are equal to pure strategies over (c , T |, and there exists ¢
< m < T suchthat the inverses oy = 3%, ..., a, = [, ! exist, are strictly increasing,

and form a solution over (c , 7| of the system of differential equations (2) — considered in the
same domain D as in Theorem 1 — and satisfy the boundary conditions (4),

(4) ag(n) =<, foralll < k < n,and aj(c ) = c, for all but at most one j between 1
and n,

and the distributions 3, (c , .), ..., B.(C , .) have their supports included in {OUT, ¢ } and
are such that (5) below holds true,

(5) if there exists j such that «;(c ) > ¢, then F;(c ) > 0 and g;(c , .) is concentrated at
OUT, for all i # j, and j3;(v, .) is concentrated at ¢ , for all vin (c , oj(c )].

In Theorems 1 and 2 above and in what follows, a;(c ) denotes the value of the continuous

extension of «; at ¢ , that is, a;(C ) :Uﬂmc a;(V). Inusing matrix notation, the system (1)
=<

can be rewritten as in (6) below,
(6) LLNF(a(b)) = M.I(a(b), b),

where LNF («(b)) and I(«(b), b) are n x 1 matrices and M is a n x n matrix defined as
follows,



[ |nF1(Oél(b)) ] ag(b)—b

LNF (a(b)) = I(a(b), b) =
| InF, (0 (b)) | m
_ M= &y
(-1)(n-2) 1 1
1 (=1)(n—2) 1
1 (—1)(n—2) .
1 1 . ’
(—=1)(n—2) 1
i 1 1 1 (=D -2) |

withb = (by, ..., b,) and a(b) = (a1(by), ..., an(by)).

From Theorems 1 and 2, we see that all Bayesian equilibria can be obtained by taking
the inverses of the solutions of the differential system (2). Remark also that the boundary
conditions are different whether we consider the first price auction with or without mandatory
bidding. In the case with mandatory bidding, the continuous extensions of the bid functions
must all be equal to ¢ at ¢ . In the case with voluntary bidding, there can be at most one bid
function!! such that the continuous extension of its inverse takes a value different from ¢ at
¢ . However, when the distributions are atomless, (4) and (5) reduce to a;(c ) = ... a,(C)

= ¢ . Inall cases, all bid functions are strictly increasing ovei (<m]?><< ai(c ), T | and there
n

exists n in (¢ , T), such that a;(n) =T and thus 8,(T ) =7 for all 1 < k < n, and 1 is the
common value of the bid functions at the upper extremity T of the valuation interval. We
prove Theorems 1 and 2 in the next section.

3.Proof of the Characterization.

The proof that a n-tuple of strategies verifying the conditions given in Theorems 1 or 2
(Section 2) is an equilibrium is short enough to be kept in the main text.

Proof of the “sufficiency parts” of Theorems 1 and 2: We immediately see that if oy, as,
..., Verify (2), then we have

M & S hFab) =



for all b in (c, n] and all 1 <i<n. We have to prove that 5;(v, .) maximizes bidder i's
payoff when the other bidders bid according to 5;, j # i, forall vinc ,T]andall 1 <i<n.
It is easily seen that a bid larger than 7 is never a best response. It can also be checked that if
v = ¢, bidding in {c } or {OUT, c } is a best response. The probability distribution 5;(c ,
.) is thus a best response.

Suppose then that v. > ¢ . Since b = (v+4c )/2, for example, gives a strictly
positive expected payoff, bidding b > v can never be a best response, and bidding b =c¢ is
not a best response when bidding is mandatory and when bidding is voluntary and i # j where

j is as in (5). Bidder i's expected payoff if he bids b € (c, n] is equal to (v—b) []
L
i#i
Fi(c;(b)) and is strictly positive. When

bidding is voluntary and i =j as in (5), this product is strictly positive and continuous at
b = c and it again gives bidder i's expected payoff if b = ¢ . Since it is strictly positive, we

can consider its logarithm. From (7), the derivative of this logarithm is equal'? to (V‘_lb) +

ﬁ for v>c and b <v. Since a; is strictly increasing over [c , n] and such that
a;(Bi(v)) = v > [;(v) when g8;(v) > c, we see that this derivative is strictly positive for
¢ < b < Bi(v). Since a;(Bi(v)) > v (it is equal except when i=j as in (5) and
vV < ;(c)), forall vin (c ,T |, and o is strictly increasing, we see that the derivative above
is strictly negative forv. > b > (;(v). Consequently, the global maximum of bidder i's
expected payoff is obtained at b = g;(v) and the sufficiency parts of Theorems 1 and 2 are

proved. ||

Next, we give the main steps of the proof of the necessity parts of Theorems 1 and 2
(Section 2). The complete proof can be found in Appendix 1. We use arguments which are
now standard in the study of auctions (see Griesmer, Levitan and Shubik 1967) as well as of
other games (see Baye, Kovenock and deVries 1992). We also use arguments from the theory
of incentive compatible mechanisms (see Myerson 1981).

Let (04, ..., B,) be a Bayesian equilibrium. We denote by b; the random variable,
whose probability measure is [3; * F;]2, and by b;(v;) the random variable, whose probability
measure is 3;(v;, .). Both random variables b; and b;(v;) should be interpreted as the bid from
bidder i. However, the distribution of b; is the exante distribution and the distribution of
b;(v;) is the distribution conditional on the choice by Nature of v; as bidder i's valuation.
When there cannot be any confusion about the strategies followed, we denote the expected
payoff of bidder i when his valuation is equal to v by P(i | v) instead of the long expression
(1). Also for the sake of simplicity, we denote by P(i | v, b ) the payoff of bidder i if his
valuation is equal to v and if his bid is equal to b; by Prob( i wins | v ) the probability that
bidder i wins if his valuation is equal to v; and by Prob( i wins | b ) the probability that bidder
i wins if his bid is equal to b. Thus, P(i | v,b) = (v—Db)Prob( i wins|v, b ) when
b £ OUT.

We define the two functions b;; and b;,, as follows:



8  bu(v) = inf{belc, +o0) | P(i|v) =P(i|v,b)}
©  bw(v) =sup{belc, +o00) [ P(ifv) =P(i[vb)}

Notice that since a bidder gets a zero payoff when he does not take part in the auction in the
voluntary bidding case and when he submits the bid equal to his valuation, the sets in the
definitions (8) and (9) are always nonempty. Since, from our definition of Bayesian
equilibrium, P( i | v ) is the highest payoff bidder i can obtain when the other bidders follow
the strategies (3;, j # i, we see that b;, (V) is the supremum of the set of “best bids" for bidder i
if he takes part in the auction. Similarly, b;;(v) is the infimum of the set of best allowable bids
for bidder i. The random variable b;(v) may not be degenerate. However, what we know for
sure is that b; (v) belongs with probability one to the interval®? [b;(v), b;,(v)] when bidding is
mandatory and to {OUT} U [b;(v), b;, (V)] otherwise.

We prove in Lemma Al-1 that every bidder's equilibrium payoff P( i | v ) is strictly
positive and thus so is also his probability of winning Prob( i wins | v ) when his valuation v
is strictly larger than ¢ . It is then not difficult to prove that, at a Bayesian equilibrium, by;(c )
= ... = by(c) = by(c) =... = bu() = c (LemmaAl-3). Moreover, we show
in Lemma A1-9 that the functions b;; and b, take strictly larger values than ¢ over (c , T ],
for all i in the mandatory bidding case and for all i except possibly one in the voluntary
bidding case. In this latter case, if b;(v) = ¢ forsomev >c and jthen F;(c ) > 0, for all
i # j, and there exists w' > ¢ such that b;(v) = ¢, forall vin[c,w1], and by(v) > c,
for all v in (w', T]. We can easily understand why there cannot be such a w' for more than
one bidder. If it was the case, then with strictly positive probability, there would be a tie at ¢
and the bidders bidding ¢ for valuations larger than ¢ would be better off if they bid slightly
higher instead.

It is rather straightforward to prove (see Lemma A1-8) the following “monotonicity”
property of the two functions b;; and b;,,: b, (v) < b;(V'), forall v, v'suchthate < v <
v' < T. This property implies, in particular, that both functions b; and b;, are
nondecreasing (Lemma A1-11). A useful property of the equilibrium strategies 31, ..., Gn,
which is not much more difficult to establish in the n bidder case than in the two bidder case,
is that the probability distributions [3; * F]a, ..., [3, * F,]2 have no mass pointb > ¢ (see
Lemma Al-7). As a byproduct, we see that if b > c , Prob( i wins | b) is equal to Prob(
b; =0UT or b; <b, forall j#i) = [[[6, = F,]o({OUT}U[c, b]) and is a continuous

J#i
function of b > ¢, and thus P(i | v,b) = (v —Db) Prob(i wins | b) is a continuous function
of vand b > c¢ . Consequently, in the definitions of b;; and b;,, we can substitute “min™ and
“max for “inf" and “sup™, respectively (see Lemma A1-10).

By comparing the bidders' behaviors at T, we also prove that by;(T) = ... =
b(CT) = b(t) = ... = b,(®) < T (Lemma Al1-12). This sequence of equalities
imply that every bidder submits the same bid when his valuation is equal to the upper
extremity T of the valuation interval. We denote this common bid by 7.

We show (Lemma A1-4) that the expected payoff P( i | v ) of bidder i conditional on
the valuation v, is a continuous function of vin [c ,T |, forall 1 <i <n. As a consequence
(see Lemma A1-13), the functions b;; and b;, are continuous from the left and from the right

10



respectively, for all 1 <i <n. Moreover, b;, can be obtained from b; by taking the limit
from the right of b;;. Similarly, b;; is equal to the limit from the left of b,;,. We then see that
the functions by, ..., by, b1y, ..., by, are strictly increasing when there are larger than ¢ (see
Lemma Al-14). For example, if b;; was equal to a constant larger than ¢ on a nondegenerate
interval, it would be continuous and thus equal to b;, over this interval, and bidder i would bid
the same bid when his valuation belongs to this interval. This bid would then be a mass point
of the bid probability distribution, which is impossible at an equilibrium, as we saw earlier.
We show in Figure 1 how these functions may look like according to what we know so far'4.

[FIGURE 1]

We now show the natural way discontinuities are ruled out in the two bidder case and
give some intuition about how we proceed in the n bidder case. In the rest of this section we
assume that bidding is mandatory. Considering the case with voluntary bidding would require
only slight changes.

Imagine that (51, ..., (3,) is a Bayesian equilibrium. We want to show that the
equilibrium strategies are pure and that the bid functions are continuous. This will be done if
we show that the functions by, ..., b,; are continuous. Because by, ..., b, are strictly

increasing, if one of them is discontinuous at a valuation v the discontinuity is of the “jump"
kind.

Can there exist b;; discontinuous at v, that is, exhibiting a jump (b;(v), b, (v)) # 0 at
v? In the two bidder case such a discontinuity is easily ruled out. Suppose n=2and i = 1.
Bidder 1 bids within the jump with a probability zero, since he bids within this interval only if
his valuation is equal to v. But then his opponent will not bid within this interval since
bidding the lower extremity by;(v) of the jump gives him the same probability of winning as
any bid inside the jump and a lower payment in case of winning. Thus, by, also displays a
discontinuity jump, which involves by;'s jump at v. In this case, the lower extremity by;(v) of
the discontinuity jump of by; would give bidder 1 a strictly higher payoff than the upper
extremity by, (v) of this jump since the probability of winning would not change while the
payment in case of winning would strictly decrease. This, however, contradicts the fact we
encountered earlier that by;(v) and by, (V) give bidder 1 with valuation v the same expected
payoff (by;(v) is bidder 1's lowest best bid and by,(v) is bidder 1's highest best bid).
Consequently, a discontinuity jump is impossible and the functions by; and b,; are continuous.

In the case of n bidders, we cannot apply the same argument to prove the continuity of
the equilibrium strategies. However, we can rule out discontinuities by looking more closely
at the payoff function in the first price auction game. We first rule out situations like those in
Figure 1, where bidder i's b;; jumps at v and where other bidders bid within the jump for
valuations strictly smaller than v. If bidder j # i submits b at w, the cost of any change from
b, and in particular the change to b;;(v), must outweigh its benefit. Note that maximizing the
expected payoff (w — b) Prob( j wins | b ) (which, under our assumptions, is strictly positive)
is equivalent to maximizing its logarithm In(w —b) + InProb( j wins|b ). Thus the
percentage decrease of the probability of winning, that is, the decrease of the term InProb( j
wins | b ) due to a decrease of his bid to b;(v), must be at least as large as the percentage

11



increase of payoff in case of winning; in other words the increase in the term In(w — b), and
we find (by using obvious notations):

(10) |AlInProb(jwins)| > |Aln(w—Db)].

Bidder i's maximal expected payoff is reached at b;(v). Thus, if he increases his bid to b, the
percentage decrease in his payoff in case of winning is not smaller than the percentage
increase of his probability of winning; that is:

(11) |AIn(v—=>b)| > | AlnProb(iwins) |.

However, the percentage change of bidder i's probability of winning is larger than the
percentage change of bidder j's probability of winning; that is:

(12) | AlnProb(iwins)| > | AlnProb(jwins)|.

In fact, bidder i has to take into account the increase in the probability of losing the auction to
bidder j. On the other hand, the probability that bidder j looses the auction to bidder i does not
change when bidder j decreases his bid to b;;(v). As a consequence, we see from (10), (11)
and (12) that the percentage change in bidder i's payoff in case of winning, when he increases
his bid from b;;(v) to b, must be at least as large as the percentage change in bidder j's payoff
in case of winning when bidder j decreases his bid from b to b;(v); that is, | A In (v —b) |

> | Aln(w—Db)|. Since the absolute changes in the payoffs are given by the difference
between the two bids, and are thus equal, we can see that the only way this is possible is if v
< w, and an example as that in Figure 1 is impossible.

Before ruling out the only remaining possible case of discontinuity, we need the
following result. We prove in Lemma A1-18 that when b;; is continuous over a neighborhood
of v, the probability Prob( i wins | b ) is a differentiable function of b over a neighborhood of
b;/(v). Consequently, we can simply take the derivative with respect to b of the objective
function (in its logarithmic form) In(v —b) + InProb( i wins|b ) and set this derivative
equal to zero at the best choice of bidder i. We find the equation:

Prob(iwinsb) — (v—b)’

(13) L Prob( i wins|b ) 1

which holds true at b = b;(v), and we obtain the mathematical expression of the equality of
the “marginal benefit" of a change of the bid with its “marginal cost".

The only possible type of equilibria with discontinuities we still have to examine is the
type of the example shown in Figure 2.

[FIGURE 2]
In this example, bidder i's b;; is discontinuous at v and all bidders k bidding within the

discontinuity jump do so for valuations not smaller than v. Moreover, we have assumed in
this example that these latter bidders k have their functions b,; continuous over the ranges of
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valuations where they bid inside the jump. If this was not true, a function by;, k # i, would
exhibit a jump included in the jump of b;;, and we would focus on by; instead of b;. If
necessary by repeating this argument, we see that our assumption does not imply any loss of
generality. Assume that the bidders k bidding continuously within the jump are bidders i + 1,
..., N. The bidders 1, ..., i — 1 have a discontinuity jump including b;'s jump at v.

We know that when bidder k's by; is strictly increasing within a certain neighborhood
of valuations, then bidder k's marginal cost of changing his bid is equal to his marginal benefit
(see equation (13)). As a consequence, equation (13) holds for all b in (b;;(v), b;,(v)) and for
all bidders k, with k > i + 1. Taking the limit for b tending towards the lower extremity
b;/(v), we see that the same equation also holds at b;;(v), if the derivative is interpreted as a
right-hand derivative. Similarly, the equation holds at b;,(v) when the derivative is the left-
hand derivative (see footnote 12 for a property similar to the one we use here).

For bids b from bidder k inside the jump of b;;, the probability that bidders 1, ..., i bid
lower is constant since it is equal to the probability that all these bidders do not bid larger than
b;;(v). We can thus write InProb(k wins | b) as follows:

InProb(kwins [b) = C + 3 InProb(b; < b),
j=it+1
j#k

where C is a constant, for all k > i+1i. Summing these equalities and dividing by

(n—i—1), we find the following equality m kZHInProb(k wins | b) — K = 'Zﬂln
=1 7=t

Prob(b; < b), where K is also a constant. Reasoning as in the beginning of this paragraph,
we see that up to an additive constant, the R.H.S. of the equality above is nothing but InProb(i

wins | b). We thus obtain the equality InProb(i wins | b) = (n—}—l) >~ InProb(k wins | b)

k=i+1
+ L, where L is a constant, for all b in [b;(v), b;,(v)]. Taking the derivative of the equality
above and using equation (13) which holds for bidders i + 1, ..., n, we see that dd—b InProb(i

wins | b) exists and we find:

n

(14) % InProb(i wins | b) = m Z ak(bﬁ
k=i+1

for all b in [b;(v), b (V)], where the derivative at b;(v) is a right-hand derivative, the
derivative at by, (v) is a left-hand derivative, and where « is the inverse of by, or, ay, = b}l

Bidder i with valuation v reaches his maximum expected payoff when he bids b;;(v).

Consequently, the marginal percentage increase of probability (f—b InProb(i wins | b;;(v)) when

he increases his bid, must be offset by the corresponding marginal percentage decrease ﬁ](\,)

of his payoff if he wins. We thus obtain & InProb(i wins | b;(v)) < ﬁ](\,) Using equation

(14) and rearranging, we find:
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1 1 1
(15) (nfifl) Zl Ock(biz(V))fbi[(V) S V*bﬂ(V) -

Similarly, because the maximum expected payoff of bidder i with valuation v is also reached
at by, (v), we find:

1 1 L 1
(16) J=om < oD k:ZM ar o)) —b() -

Equations (15) and (16) can be rewritten equivalently as follows:

& v—h;(v) . & vV—D;, (V)
(17) k:zz;kl O[],«(bﬂ(v);—bﬂ(v) S (n — I = 1) S kgl ak(bi,‘,(V))—bm(V) )

However, as it can be easily checked (see the proof of Lemma A1-25), the functions ﬁ

b
are strictly decreasing functions of b over the domain v > b and «y,(b) > v. Since b;(v) <

A ‘ & v—by (V) < v—biu (V) i
b;u(v) and ai(by(v)) > v, we have k;ﬂ 7ak(bﬂ(v)§fbﬂ(v) > k;ﬂ RO which
contradicts (17). We have ruled out the only possible type of discontinuities (see Figure 2) in
the equilibrium strategies, and consequently, the equilibrium strategies have to be continuous

bid functions.

Once we know that the equilibrium strategies are continuous, the differentiability over
(c ,n] of the inverses a; = B, ..., a,, = B3, ! follows from the already mentioned Lemma
Al1-18. The system (2) (Section 2) is simply obtained by solving for %ak(b), 1 <k <n,the
equations (13), with 1 <'i <n, where [[Fx(ax(b)) has been substituted for Prob(i wins | b)
ki
(see Lemmas A1-16 and A1-25).

4.Existence and Other Properties of the Equilibria.

We obtain the existence of a Bayesian equilibrium directly from the characterization
given in Theorems 1 and 2 (Section 2). We prove this existence when ¢ is not a mass point of
any of the distributions Fy, Fs, ..., F,. In the voluntary bidding case, we also prove the
existence when ¢ is a mass point of all these distributions. In Section 5, we show a class of
asymmetric n-tuples of distributions (Fy, Fs, ..., F,,) for which we prove the existence when
bidding is mandatory even in the case of simultaneous mass point at ¢ . In Corollary 3 (v),
our existence results in the symmetric case are extended somewhat (see also footnote 17).

Theorem 3: Let the assumptions of Section 2 be satisfied. If Fi(c )= ... = F,(c) = 0,
there exists a Bayesian equilibrium of the first price auction with or without mandatory
bidding. If the right-hand derivatives of Fy, ..., F, at ¢ exist, the density functions %Fl =
fi, ..., %Fn = f, are bounded away from zero'® over [c ,T ],and F;(c ), ..., F.(c ) > O,
there then exists a Bayesian equilibrium of the first price auction with voluntary bidding.

14



Proof: See Appendix 2.

The proof of Theorem 3 is long but straightforward. From Theorems 1 and 2 (Section
2), we know that the existence of a Bayesian equilibrium reduces to the existence of a
parameter n for which there exists a solution («ay, ..., ) of (2, 3) or (2, 4, 5), depending on
whether bidding is mandatory or not. The system (2) considered in the domain D is equivalent
to the system (18)—considered in the domain D = { (b, ¥1, ..., ¥,) € R"™' | F;(c ), F;(b)
<1 < 1,foralll <i<n }—inthe unknown functions ¢y = Fy(a1), ..., ¥, = Fu(ay):

d _ o) [ (D02 S 1
(18) w¥ud) = 7 { )b T 2 ETwm e }’1 =k=n
1£k

Under the assumptions of Section 2, F;! is locally Lipschitz over (Fg(c ), 1], for all
1 < k < n, and the system (18) thus satisfies over D the standard requirements of the theory
of ordinary differential equations.

Under the boundary conditions (2), the system (18) presents a singularity atc . In fact,
Fl(wic)) — ¢ = ai(c) — ¢ = 0, for at least n — 1 values of the index i, and there

7

may exist 1 < j < n such that F;l is not locally Lipschitz at ¢ . As a particular consequence,

in the mandatory bidding case we cannot apply the classic theorems of the theory of ordinary
differential equations to the system (18) and the initial condition o;;(c ) = ¢, forall 1 < i
< n. Furthermore, in the voluntary bidding case the boundary conditions (4, 5) do not
provide us a complete initial condition at ¢ . Rather we will consider the system (18) with the
initial condition (19) below,

(19) ¢i(n) = 1,foralll < i < n,or, equivalently, a;(n) = T ,foralll < i < n.

For a parameter n such thatc < n < T, the system (18) does not present a singularity at
this initial condition. We can thus apply the theorems of the theory of ordinary differential
equations to the problem (2, 19), through the system (18). We prove Theorem 3 by proving
the existence of a parameter ¢ < 7 < T for which the solution of the problem (2, 19)
consists of strictly increasing functions defined over (c , ], such that the conditions (3) or (4,
5) are verified. To this end, we first study the system (2) when there is no mass point. When
Cc is a mass point of all distributions, we come back to the atomless case by extending all
density functions to the left, and by considering a larger common support.

We first assume that Fy(c ) = ... = F,(c ) = 0. We prove (Lemma A2-2) that for
everyc < n < T, the solution of (2, 19) in the domain D consists of strictly increasing
functions. We then look at the maximal solution («q, ..., «;) of (2, 19) over (c , n]: that is,

according to the terminology from Birkhoff and Rota (1978, p.162) the solution of (2, 19) that
cannot be defined over a larger sub-interval of (c , ] and still be a solution of (2, 19) in the
domain D. Following Pontryagin (1962, p.21) we refer to the definition interval (v, n] C
(c , n] of the maximal solution as the maximal interval of existence, or simply as the maximal
interval. We prove that only two cases are possible. In the first case, the maximal interval is

equal to the whole (c , »]; in other words, v = ¢ . In this case, we have (Lemma A2-4)
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either a1(C ), ..., () > € oray(c) = ... = au(c) = ¢ (see Figure 3). We say
that such a solution is of type I.

[FIGURE 3]

In the second case, the definition interval of the maximum solution is a sub-interval (v, 7]

strictly smaller than (c, n]; or, ¥ >c . In this case, we show (Lemma A2-7) that all

functions o, except possibly one, are such that a;(y ) = ~ (see Figure 4). We say that the
solution is of type II.

[FIGURE 4]

An important property of the system (2) is that the solution («y, ..., «,) of the
problem (2, 19) depends monotonically of n (Lemma A2-8); that is, if ' > nand if (ay, ...,
a,) 1 the solution corresponding to  and (a4, ..., a',), the solution corresponding to ', then
o' <« over the common definition domain of (a4, ..., o) and (ay, ..., ).
Furthermore, we prove (in Lemma A2-13) that when 7 tends towards T the corresponding
solution is of type Il and ~ tends towards T , and that a solution corresponding to 7 close to ¢
is of type I. By using continuity arguments (see Lemma A2-12 and the proof of Theorem 3 in
Appendix 3), we then show that there exists 7, such that the solution of (2, 19) is such that
aj(c) = ... = au(c) = c . This solution is thus also a solution of the boundary value
problem (2, 3); and, by Theorems 1 and 2 (Section 2), it corresponds to a Bayesian
equilibrium and Theorem 3 is proved whenF(c ) = ... = F,(c ) = 0.

Assume now that the right-hand derivatives of Fy, ..., F, at ¢ exist, %Fl =T, ...,
dd—an = f, are bounded away from zero over [c, T], and ¢ is a mass point of all
distributions Fq, ..., F,. The existence in the voluntary bidding case can now be proved
simply by extending the density functions (for example in a piecewise linear way) to an
interval [c o, T ], withc o < ¢, in a such a way that they define new atomless probability
distributions. From the continuity (proved in Lemma A2-13) of the lower extremity v of the
maximal interval with respect to 7, we see that there exists n such that the corresponding ~ is
equal to ¢ . The solution of (2, 19) with this » is a type Il solution, and therefore the initial
condition (4) is immediate. We also prove (Lemma A2-7) that the condition (5) is satisfied.
This value of n thus determines an equilibrium and the proof of Theorem 3 is complete.

The previous argument provides an interpretation to the type Il solutions. Consider
such a solution and the lower extremity v of its definition interval. It defines a Bayesian
equilibrium of the first price auction with voluntary bidding and with a reserve price equal to
7. Inour setting, this auction where the bidders' valuations are distributed over [c , T ] is
equivalent to the first price auction with voluntary bidding where the valuations are distributed
over [y, T] and where the probability weights previously spread over [c, 7] by the
distributions Fy, ..., F,, are now concentrated at v . An immediate consequence of Theorem 3

is thus Corollary 1 (i) below. Corollary 1 (ii) follows from the property of monotonicity of the
solutions of (2, 19) with respect to  (Lemma A2-8).

16



Corollary 1: Let the assumptions of Section 2 be satisfied.

(). Forallr € (c,T), there exists a Bayesian equilibrium of the first price auction with
voluntary bidding and with a reserve price equal to r.

(ii). If (B1, ..., Bn) is a Bayesian equilibrium when the reserve price is r and if (5", ..., ')
is a Bayesian equilibrium when the reserve price is r', with ¢ <r<r' <tT, then
B'i(v) > Bi(v), forall vin (r',T |.

Using the property of monotonicity (Lemma A3-8), we see that if (a4, ..., «,) and
(@1,...,a,) are two type Il solutions with the same ~ , if a;(y ) >y and @ ;(y ) > v, for
some i and j, then i =j. From this fact and the equation (7), we prove that under the
conditions of Theorem 3 when Fy(c ), ..., F,(c) > 0 the equilibrium is uniquely

determined over (c, T]. We refer to such an equilibrium as an “essentially” unique
equilibrium. The Bayesian equilibrium of the first price auction with a reserve price in (c ,
T ) as in Corollary 1 (i) is thus essentially unique.

Corollary 2: Let the assumptions of Section 2 be satisfied. If the right-hand derivatives of Fy,

..., F, at ¢ exist, the density functions %Fl = fi, ..., %Fn = f, are bounded away from

zero over [c, T, and Fy(c ), ..., F,(c) > 0, there then exists an essentially unique
Bayesian equilibirum (54, ..., 3,) of the first price auction with voluntary bidding. Any other
n-tuple of strategies which coincides with (5, ..., §,) over (c , T | and which satisfies (5) is

an equilibrium.

Proof: See Appendix 3.

Thanks again to the property of monotonicity, we see that the set of parameters n
corresponding to solutions of (2, 3) or (2, 4, 5) and thus to Bayesian equilibria is an interval.
Using continuity properties, we show that this interval (denoted A* in the proof of Theorem 3
in Appendix 2) is closed and we prove Corollary 3 below!®. From this corollary, we see that
either there is a unique equilibrium or there exists a continuum of equilibria.

Corollary 3: Let the assumptions of Section 2 be satisfied. If Fi(c )= ... = F,(c) = 0,
there exist n* and ™ in (c , T ) such that »* < »** and the solution (a4, ..., «;,) of (2)-(19)
corresponds to a Bayesian equilibrium of the first price auction with mandatory bidding if and
only if it is an equilibrium of the auction with voluntary bidding, and if and only if n € [n*,

n*].

Proof: Immediate from Theorem 3, the monotonicity with respect to » (Lemma A2-8) and the
observation made above that for a solution of type | and when there is no mass point at ¢ , we
have (Lemma A2-4) either a;(C ), ..., a,(C) > C oray(C) = ... = au(c) =c. |

We now give some properties the Bayesian equilibria display when there exists a
relation of stochastic dominance between valuation distributions. Again, these properties
mainly follow from results we have already proved in the course of the proof of Theorem 3 in
Appendix 2.
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Corollary 4: Let the assumptions of Section 2 be satisfied. Let (5, ..., (3,) be a Bayesian
equilibrium of the first price auction with or without mandatory bidding, and let i and j be two
indicessuchthatl < i,j < n.

(i). IfF;(v) < ()forallvm[g,t],thenwehaveF( i(b)) < Fi(ai(b)), for all b in
[c, 7], Wlthn = [i(C) = ... = Bu(T); or, equivalently, 5;(v) < B;( F;'(Fi(v))), for
allvin(c ,T].

(ii). If F;/F; is nonincreasing over (c , T |, then we have 3;(v) < g;(v), forallvin(c,T].
(iii). If % Fi/F; (v) < 0, forallvin(c,tT], then we have 3;(v) < f;(v), forall vin (c,
T ).

(iv)). IfFi(v) = Fj(v),forallvin[c ,T |, then we have 5;(v) = g;(v),forallvin(c,T].
(v). fFy=... =F,=F,thenwe have 3, (V) = ... = 8,(v) = B(v) = v — [’ F"}(w)
dw/F"=L(v), for all v in (c, T]; these equalities define the unique equilibrium in the
mandatory bidding case and the essentially unique equilibrium in the voluntary bidding case.

Proof: See Appendix 3.

Statement (i) of Corollary 4 tells us that the same relation of stochastic dominance passes from
the valuation probability distributions to the bid probability distributions (for a related result
in the case of two bidders, see Proposition 2.2 (ii) in Maskin and Riley, 25 December 1996).
In fact, F;(«;(b)), for example, is the cumulative distribution function of the probability
measure of bidder j's bid b;. As it can be easily seen, the assumption of (ii) is stronger than
the assumption of (i). In addition to the competition from the other bidders, bidder j faces the
competition from bidder i, who is more likely to have only little interest in the item. Since
bidder i faces, likely, a more fierce competition from bidder j, and, under the assumption of
(it), bidder i bids higher. Statement (iii) is useful in the proof of the results in the next section.
From (iv) two bidders whose valuations are identically distributed follow the same
equilibrium strategy. Corollary 4 (v) thus extends this uniqueness in the set of symmetric n-
tuples of (pure) strategies, proved by Riley and Samuelson (1981), to the set of all (symmetric
and asymmetric) n-tuples of strategies'”.

5.A Special Class of Asymmetric Combinations of Distributions.

In this section, we obtain existence and uniqueness results for the class of asymmetric
n-tuples of distributions (F4, ..., F,) for which every bidder's probability distribution is one of
two distributions. Without loss of generality for such a n-tuple we can assume that there exist
1 <m < n, Gy and G, such that:

(20) F, =Gy, forall 1 < i < myandF, =Gy, forall m < i < n.

Simple considerations of collusion, from a symmetric setting, lead to n-tuples in this
class. Assume that the bidders' valuations are identically distributed according to F. Suppose
that m > 1 bidders collude into one surplus maximizing cartel, with perfect information about
its members' valuations, and perfect control over their actions. Since when it wins, the cartel
will allocate the item to its member with the highest valuation, it is equivalent to a single
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bidder whose valuation is the maximum of m independent, random variables distributed
according to F. We thus obtain an asymmetric situation where one bidder's valuation is
distributed according to G, = F™ and the other bidders' valuations are distributed according to
G; = F. Notice that we would still obtain a n-tuple of distributions from the class we consider
in this paragraph if several cartels of the same size m formed, or if all bidders colluded into
cartels of two different sizes.

In the previous example, if the distribution F is absolutely continuous with a strictly
positive, continuous density function over (¢ , T |, the assumption (21) below is satisfied,

(21) & & (v) <oforallvin(c,T].

In Corollary 5, we show that the equilibrium is unique under the assumption of the stochastic
dominance relation (20) between atomless distributions G; and G;. The examples studied by
Marshall, Meurer, Richard and Stromquist (1994) satisfy this requirement and the equilibria
obtained by these authors were thus the unique equilibria.

If (19) holds true, Corollary 4 (iv) (Section 4) implies that any equilibrium is
determined by two bid functions 'y and ('s used by the bidders whose valuations are
distributed according to G; and G, respectively. The system (2) thus reduces to a system of
two equations in the unknown functions o'y = 87! and o'y = 351, If we divide these two
equations by each other and simplify, we see that the differences («'i(b) —b) and
(a'9(b) — b) appear only in a quotient of two polynomials of degree one. For this reason, it is
advantageous in our proofs to consider the differential system!® the functions ¢'s; = a'23'1
and ('; form a solution of. Remark that Corollary 5 does not require any strengthening at ¢
of the regularity conditions of Section2.

Corollary 5: Let the assumptions of Section 2 be satisfied. Assume that there exist
1 < m < nand two distributions G;, G, absolutely continuous over [c , T | such that (20) and
(21) hold true. There then exists a unique equilibrium in the mandatory bidding and an
essentially unique equilibrium in the voluntary case.

Proof: See Appendix 3.

It turns out that if all distributions except at most one are identical, a type Il-solution

(see Section 4) of the differential system (2) with initial condition (19) is such that a; (v ) =
= oy(y) = ~ . Foran arbitrary n-tuple of distributions, we were only able to prove
that a;(y ) = v, for all but at most one «; (see Lemma A2-7). This property of the special
class of n-tuples we study in this section implies the existence of a Bayesian equilibrium of the
first price auction with mandatory bidding when there is a mass point at ¢ (see also footnote

17).

Corollary 6: Let the assumptions of Section 2 be satisfied. Assume that there exist
n—1<m<nand two distributions G;, G, such that (20) holds true. Assume further that
the right-hand derivatives of G, G, at ¢ exist, the density functions %Gl = 0y, %GQ = 0
are bounded away from zero over [c , T ], and G;(c ), Go(c ) > 0. There then exists a
unique Bayesian equilibrium of the first price auction with mandatory bidding.
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Proof: See Appendix 3.

6.Conclusion.

Without assumption of symmetry, and with an arbitrary number n of bidders, we
obtained a characterization of the Bayesian equilibria of the first price auction game with or
without mandatory bidding. Proceeding directly from this characterization, we proved the
existence of a Bayesian equilibrium. We proved inequalities between equilibrium strategies
when there exist relations of stochastic dominance between valuation distributions; as a
consequence of these inequalities, two bidders have the same equilibrium strategy if their
valuations are identically distributed. When the distributions have a mass point at the lower
extremity of the support, we prove the unigqueness of the equilibrium. When there are no more
than two different valuation distributions and when there exists a relation of stochastic
dominance between them, we proved the uniqueness of the equilibrium in the atomless case.
This result can be applied to the valuation distributions that result from a symmetric situation
after some bidders have colluded.

Appendix 1.

Lemma Al-1: If (5, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then P(1|v) > 0,...,P(n|v) > 0, Prob( 1wins | v) > 0,
..., Prob(nwins | v) > 0,and Prob( b; =0OUT | v) = 0, ..., Prob( b, =0UT | v)
= 0,forallvin(c,T].

Proof: Let v be a valuation in (¢ , T ]. Suppose that there exists i such that P(i | v) = 0. We
see that bidder i cannot win the auction with a strictly positive probability when he submits a
bid strictly smaller than v. Otherwise he would submit such a bid and would obtain a strictly
positive payoff. Thatis, Prob(iwins | v,b) = 0, forallb < v. Consequently Prob ( mix'

] 7

b; <b) = 0,forallb < v, and thus Prob ( mix, b; <v) = 0andProb ( mix, b, > v)
J7 1 J7
= 1. Since max b; > mix' b;, we also have Prob ( maxb; > v ) = 1. Since a winner is
J J7
always declared as long as at least one bidder has bid, we see that there exists a winner with

probability one. Consequently > Prob (kwins | ¢ <v; <v, forallj) = 1. We then see
k=1

that there exists k such that Prob ( k wins | ¢ <v; <v, forall j) > 0 and thus Prob ( k
wins | ¢ <v, <v) > 0. However this is impossible at the equilibrium because it would
mean that for Fj-almost every v, in (c , v), there is a strictly positive probability that bidder k
wins the auction with a bid strictly larger than his valuation and would thus obtain a strictly
negative payoff. Bidder k's payoff would be strictly higher if he bid his valuation instead.

We have proved that P(i | v) > O, for all i. If bidder i's probability of winning was
equal to zero, his expected payoff would also be equal to zero and we have proved Prob( i
wins | v) > 0, foralliandv > c .
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By reasoning as in the previous paragraph, we can prove that Prob( b; = OUT | v)
# 1,foralliandall v>c . If Prob( b =0UT | v ) > 0, bidder i would increase his
expected payoff when his valuation is equal to v if he bid rather with probability one
according to the conditional distribution (;(v, . | {b; ## OUT}), and Lemma A1-1 is proved.

We need one more notation in addition to those introduced in Section 3. We denote by
b ; the essential infimum of the random variable b; conditional on b; # OUT. That is, b ; is
the highest number which is not larger than b; with conditional probability one. From Lemma
Al-1, we know that the event b; # OUT has a strictly positive probability (actually at least
equal to 1 — F;(c )), for all i. Thus the definition of b ; is meaningful.

Lemma A1-2: If (51, ..., (B,) is a Bayesian equilibrium of the fist price auction with or
without mandatory participation, then

by=..=b,=c.
Proof: From the rules of the game and the definition of b ;, we immediately obtainb ; > ¢ .
Denolte<m_a>é b,byb. Supposethat b > c . LetH be the set of indicesisuchthat b =
1 n

b ;. Letibe anelement of H, that is, suchthatb = b ;. Then, for F;-almostall v; in[c ,b ;)
we have Prob (iwins | v; ) = 0. In fact, from the definition of b ; we see that for F;-almost
all v;in[c ,T ], thusin[c ,b ), if bidder i bids he bids at least b ; with probability one. If the
probability Prob ( i wins | v; ) was strictly positive over a Borel subset of [c , b ;) of F;-
measure strictly positive, the expected payoff P(i | v;) would be strictly negative for F;-almost
all v; in this subset. In fact, for F;-almost all these v, bidder i bids strictly more than v; and
the probability of winning is strictly positive. However, bidder i can guarantee a payoff equal

to zero by simply submitting a bid equal to his valuation.

From the previous paragraph, we know that, for all i in H and for F;-almost all v; in
c,b;),Prob (iwins | v; ) = 0. However, this equality andb ; = b > ¢ contradict
Lemma Al-1 and Lemma Al-2 is proved. ||

Lemma A1-3: If (G4, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then by;(c ) = ... = by(c) = biu(c) = ... = by(c)
= ¢ and the probability measures g;(c , .), ..., Bn(C , .) are concentrated at ¢ in the case

of mandatory bidding and have their supports included in {OUT, ¢ } in the case of voluntary
bidding.

Proof: From Lemma Al-2 we see that all bids strictly larger than c have a strictly positive
probability of winning and thus if bidder i with valuation ¢ submits such bids, he will incur
negative payoffs. However, he can obtain a payoff equal to zero if he submits ¢ or, in the
case with voluntary bidding, if he stays out. ||
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Lemma Al-4: If (51, ..., (,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then Prob( 1 wins | v ), ..., Prob( n wins | v ) are
nondecreasing functions of v and we have

P(l1]|v) = fProb lwins | v)dv,...,P(n|v) = fProb nwins | v) dv.

Proof: The proof proceeds as in Myerson (1981). Consider v' > v. When his valuation is
equal to v, bidder i cannot obtain more than P(i | v), thus

P(i|v) > [pi(v,by,...,0,) [Bi(V,.) ® {jg (B*F;) }] (db;, (dvj, dbj)z).

However, we know that p;(v, by, ..., b,) = p;(V, by, ..., b,) + (v—V) I{iwins | by, ...,

b}, where I{i wins | by, ..., b,} is equal to zero if i ¢ S(by, ..., b,) = {I | by #OUT
and b, = <m]?X< b, } and is equal to 1/#S(by, ..., b,) ifi € S(by, ..., b,). Substituting
n

its value to p;(v, by, ..., b,) and making use of the definitions of P(i | v') and Prob( i wins |
V'), we obtain

P(i|v)=P(i|Vv) > (v—V)[Kiwins|by, ..., b, }[Bi(V, ) ® {jg i(ﬁj*Fj)}](dbi, (dv;,
db;) ;i)
= (v —V')Prob(iwins | V'),

and thus,

P(Gi|v)— P(i|Vv) > (v—V')Prob(iwins | Vv').
Permuting v and V' gives the inequality

(v—V')Prob(iwins | v) > P(i|v) — P(i| V).
Regrouping the two last inequalities yields

(v—V')Prob(iwins | v) > P(i|v) — P(i|Vv) > (v—V')Prob(iwins | V'),
which implies that Prob( i wins | v) is nondecreasing in v and that P(i | v) — P(i| V') is
equal to fU“ Prob( i wins | w ) dw. Lemma Al-4 then follows by taking v' = ¢ and by
using the fact implied by Lemma Al-3 thatP(i|c ) = 0. ||
Lemma A1-5: Assume that (G, ..., §,) is a Bayesian equilibrium of the first price auction
with or without mandatory bidding. For all 1 <i <n, if b > ¢ is a mass point of [3;*F;]s,

that is, B;xF;([c ,T ] x {b}) > 0, then there exists j # i such that b is a point of increase
to the left of [3;%F,]2, thatis, 5,%F; ([c ,T] x (b—¢,b]) > 0,foralle > 0.
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Proof: Assume that b > ¢ is a mass point of [3;xF;], and that b is not a point of increase to
the left of [3;xF;]2, forall j # i. Thus, for all j # i, there exists ¢; > 0 such that 8;xF; ([c ,
T|] x(b—¢j, b)) = 0. Consider e > 0 the minimum of these ¢;, that is, e = ,m7i£n,ej.
J (3
When bidder i submits b with a strictly positive probability, his valuation must be strictly

larger than ¢ (see Lemma A1-3). From Lemma Al-1, we know that his expected payoff and
his probability of winning are strictly positive. Thus bidder i would strictly increase his
payoff if, instead of bidding b, he submitted max(b%g, b —€/2). This is impossible at an
equilibrium and Lemma A1-5 is proved. ||

Lemma A1-6: If (G4, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then, for all 1 <i <n, if b > ¢ is a point of increase to the left
of [B;xF;]2, thatis, 5;xF; ([c ,T] x (b—¢,b]) > O,foralle > 0, then

BFi(le . T] x{b}) =0,
forall j # i.

Proof: Take b > c¢ a point of increase to the left of [3;*F;], and assume that there exists j
# i such that b is a mass point of [3,xF,]2, that is, 8;«F;([c ,T ] x {b}) > 0. Forall e > 0,
denote by B(¢) the Borel subset of [c , T | such that Prob(b;(v) € (b—¢,b]) > 0, forallv
inB(e). Ife < €, thenB(e) C B(¢'), thatis, B(e) is nondecreasing in e. By assumption, we
have F;(B(¢)) > O, forall ¢ > 0. There exists n such thatb — ¢ > n >0andv >
b+n, forallv € B(n). Otherwise, forallm > 1suchthatb — ¢ > I there would exist
V,, € B(%)suchthatv,, < b + . Lemma4impliesthatv > b — % forallvinB(l),
and thusv,, > b — &, Since P(i | v) = P(i | vandb;(v) € (b— 1, b]), forallvin
B(L), weseethatP(i | v,) < 2. Fromb — 1 < v, < b + 1 wesee th%}b_llm o Vm
exists and is equal to b. From Lemma Al-4and P(i | v,) < 2, weseethatP(i | b)=0.

This contradicts Lemma Al-1 and there exists such a 7.

We now see that for e small enough, bidder i with valuation in B(e) would obtain a
strictly higher payoff by bidding slightly above b. Take e >0and § > Osuchthat'’ ¢ < 7

j*F]“ b j*F]“ _,b ]'*F]" b 2 H
and n 72[[5]_*&]];(([{&}&” _ h“ﬁgj*pjﬁ([é'b])h({ N2 S s Forallvin B(e) C B(n), we have

Pilv and biv)eb—c b)<(v-b+e {[B+Flc, b)+} [BFl{bh}
[T [Be<Fil2(lc , b))

k#i,j

< (v=b-8) TTAeFile . b)

< P(i | v,b+56).
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The first inequality above is obtained by using upper bounds of the probability of winning and
of the payoff in case of winning. The upper bound of the probability of winning was derived
by assuming that all ties involving only bidder i and bidders k # | are solved in favor of
bidder i and that all ties involving bidder i, bidder j and bidders k # i, j, are solved between
biddersiand j. Remark thatv > b — ¢, forall vin B (¢). The second inequality is obtained
from the definition of 7, € and 6 and from the fact thatv — b > n, forall vin B (¢). The
third inequality is immediate. From this chain of inequalities, we find that P( i | v and
bi(v)e (b—¢ b]) < P(i | v, b+0), for all v in B (e¢), which is impossible at an
equilibrium and Lemma A1-6 is proved. ||

Lemma A1-7: If (51, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding and ifb € (c , + o0), then

[BixF1]a ({b}) = ... = [BuxF.]2 ({b}) = 0.

Proof: Assume that there exists b > ¢ and 1 < i < n such that b is a mass point of
[BixFi]o. Then Lemma Al-5 implies that there exists j # i such that b is a point of increase
to the left of [5;+F;],. However, from Lemma A1-6 we know that, since b is a point of
increase to the left of [3;xF,]2, b is not a mass point of [G;xF.]s, for all k # j, and in
particular of [3;xF;]o. We thus have a contradiction and Lemma A1-7 is proved forb > c . ||

Lemma A1-8: If (5, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then

bin (V) < bi(Vv),
foralll < i < nandforallc <v<v <T.

Proof: Suppose that there exist 1 <i<nandc <v <V <T such that b;,(v) > by(V).
From the definitions of by, (v) and by;(Vv'), there exist two sequences d,, 2 b1.(v) and d',, 2

bu(v), suchthat P(i | v) = P(i | v,dy)andP(i | v)) = P(i | v, d),), forallm> 1.
Without loss of generality, we can assume that d,, > d',, and thus that d,, > c, for all
m > 1. From Lemma A1-2, Prob( iwins | d,, ) > 0, forallm > 1.

From the definition of an equilibrium, bidder i with his valuation equal to v cannot
obtain an expected payoff larger than P(i | v), we see that (v —d,,) Prob( i wins | d,, ) >
P(i | v,d),) = (v—d,,) Prob(iwins | d',, ). Similarly, if his valuation is equal to v' he
cannot obtain an expected payoff larger than P(i | V'), and thus (v' —d',,) Prob( i wins | d',,
) > P(i |v,d,) = (v—d,) Prob( iwins | d, ). Combining these two inequalities
together, we find (v' — v) [ Prob( i wins | d', ) — Prob(iwins | d,, )] > 0. Sincev' >
v, we obtain Prob( i wins | d',, ) > Prob( i wins | d,, ). However, from our initial
assumption we have d,,, > d',, and thus Prob( i wins | d,, ) > Prob(iwins | d', ), for all
m > 1. Consequently, Prob( i wins | d,, ) = Prob(iwins | d',, ), forall m > 1. But this
implies that P(i | v) = (v—d,,) Prob(iwins | d,,) < P(i |v,d},) = (v—d',) Prob(i
wins | d',, ), which is impossible at an equilibrium and Lemma A1-8 is proved. ||
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Lemma A1-9: |If (51, ..., B,) is a Bayesian equilibrium of the first price auction with
mandatory bidding, then b;;(v) > ¢ ,forallvin(c ,T]andalll1 <i<n. If (£y,...,5,)isa
Bayesian equilibrium of the first price auction with voluntary bidding, then b;;(v) > ¢ , for all
vin (c,T] and all i between 1 and n except possibly one. Moreover, in this latter case if
there exists i and v > ¢ such that b;(v) =c then Fx(c ) > 0and [BrxF]2({c }) =0, for
all k # 1.

Proof: Let (3, ..., B,) be a Bayesian equilibrium of the first price auction with mandatory
bidding. Consider v >c . If b;(v) = c, there exists d';, 2 C such that P(i | v) =

(v—d,,) Prob( i wins | d', ), forall m>1. If Prob(i wins | ¢ ) = O, the expression
(v —b) Prob(iwins | b) would be continuousatb = c and thus P(i | v) would be equal to
zero which contradicts Lemma A1-4. Thus Prob(i wins | ¢ ) > 0. Since b;(v) = ¢, we
obtain from Lemmas Al-7 and A1-2, b;(w) = b;,(w) = c,forallwin[c,v). Take win
(c, V). Since Prob(i wins | ¢ ) > 0, we see that in the first price auction with mandatory
bidding there is a strictly positive probability of a tie at ¢ and bidder i with valuation w would
be better off bidding slightly more than ¢ . This is impossible at an equilibrium and we have
proved that b;(v) > c . The same reasoning shows that there cannot be a tie at ¢ in the case
of voluntary bidding. Consequently, bidder i must be the only one to bid ¢ with a strictly
positive probability and thus [G;*Fx]2({c }) = 0 and by (u) > c ,forallk #i,and allu > c .
Moreover, Prob(iwins | ¢ ) > 0impliesthat Fi(c ) > 0, forallk # i. ||

Lemma A1-10: If (3, ..., 3,) is a Bayesian equilibrium of the first price auction with or
without mandatory blddlng then Prob(i wins | b) is a continuous function of b in (¢ , + o0)
and is equal to [ [Bk*Fr]2 ({OUT} U [c , b]). These properties of Prob(i wins | b) hoId true
JFi

also at b =c when bidding is voluntary and there exists u > c such that b;(u) =c .
Moreover, in both auctions P(i | v) = (v—b;(v)) Prob(i wins | b;(v)) = (v—b(v))
Prob(i wins | b;,(v)) and we can substitute min and max to inf and sup in the definitions (8),
(9) (Section 3) of b;;(v) and by, (v), respectively, forall1 <i<nandallvinc ,T]|.

Proof: From Lemma Al-7, no bidder bidsb > ¢ with a strictly positive probability and thus

Prob(i wins | b) = [][Bk*Fr]2 ({OUT} U|c, b]), for all b in (¢, + oc). From Lemma
J#

A1-9, the same is true when bidding is voluntary and there exists u > ¢ such that b;;(u) =c .

Every factor [G;*F;]o ({OUT} U [c , b]) and thus also Prob(i wins | b) are continuous at b

and the first part of the lemma is proved.

From Lemma Al1-7 and A1-9 we see that (v — b) Prob(i wins | b) is continuous over
(C, + o) in both auctions and over [c, + oco) in the case of voluntary bidding when there
exists u > ¢ such that b;(u) =c . From Lemma A1-9 we also see that, for v > ¢ , b;(v) and
thus b;, (v) belong to the interval of continuity of (v — b) Prob(i wins | b) and the second part
of Lemma A1-10 follows.

The second part of Lemma A1-10 for v = ¢ follows immediately from Lemma Al-3.
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Lemma Al1-11: If (G4, ..., B,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then the functions b; and b;, are nondecreasing over [c , T ], for
alll1 <i<n.

. From Lemma A1-8, we have b;,(v) <

Proof: Letv, Vv'suchthatc < v < V' T. Fr
b;.(V'), we obtain b;(v) < b;(v') and b;, (V)

b;i(v'). Since by (v) < by, (v) and b; (V')

< by, (V') and Lemma Al-11 is proved. ||

<
<

Lemma Al1-12: Let (B4, ..., B,) be a Bayesian equilibrium with or without mandatory
bidding. Thenthereexistsc < n < T suchthatb;,(T) = ... = b,(T) = by(T) =
.= bnl(_(f) =1n.

Proof: Denot b;u(T) b d min  by(T)bym. A that . We first
roo enoe1<mzax< (T) ynan1 Sm@_m< (T ) by m. Assume that » > m. We firs

n n

prove that for all i such that b;,(C ) = 7, we have [3;xF;]o ([m, n]) = 0. Letiand j be such
that b;,(C)=mn and by(T) =m. |If i=], the result [G;*F;]s ([m, n]) = 0 follows
immediately from Lemmas A1-7 and A1-8. We can thus assume that i # j. From Lemma Al-
10, we have P(i | T) = (T —Dby(tc)) Prob (i wins | by(T)) and P(j | T) =
(T —by(T)) Prob (i wins | by(T )). Because P(i | T ) is the largest payoff bidder i can
obtained and b;, (T ) = n, we have

(AL1) P(i|T) = (T —n)Prob(iwins | ) > (T —by(T))Prob (iwins | by(T)).

From Lemmas Al-7 and Al-8, we see that Prob (i wins | ) = 1. Moreover, from Lemma
A1-10 we have Prob (i wins | by(T)) = [B;*F;]2 ([c, b;(T)]) kl;[ [BrxFe]2 ([, bu(T)])
2¥)
= lﬁ];[ [BrxFrl2 ([c, b;(T)]). We also have Prob (j wins | b;(T)) = [BixFi]2 ([c,
%

by©)]) II [BexFil2 ([c, bj(T)]). From Lemma Al-1, we have (T —by(T)) > O,
ki,

€ —n) = (€ =bu(T)) > 0and [xFis ([c, bu(T)]) kl}[ﬁk*Fk]z (le, byu(T)]) > 0.

g
If [BixFi]2 ([c, by(T)]) < 1, the inequality (Al.1) would then imply (using Prob(j
wins | ) = 1)

(T —mn) Prob (j wins | ) > (€ —by(c)) Prob (jwins | by(T)) =P(j | T,
bju(T)),

which is impossible and thus [3;xF;]2 ([c , bj(T)]) = 1, thatis, [B;xF;]2 ([ba(T ), n]) =
[Bi*F;]2 ([m, n]) = 0.

In the previous paragraph, we showed that [5;xF;]; (Im, n]) = O, forall 1 <i<n
such that b;,(C ) =n. If b;,(T) =n, forall 1 <i < n, the expected payoff of any bidder i is
strictly larger if he submits m than if he submits = b;, (T ), since his probability of winning
does not change (and is strictly positive) and his payment in case of winning decreases. If
there exists j such that b;, (T ) # n, any bidder i such that b;, (T ) = 7 sees his payoff increase
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if he submits max{ b;,(c) | 1<j<nandb;(C) < n } instead of b;,(C)=mn. This
contradicts the definition of an equilibrium and Lemma A1-12 is proved. ||

Lemma A1-13: Let (54, ..., §,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding. Then we have,

bii(v) :Jgnv b;,(w), forallvin (c ,T |,
<

and

biu(v) = lim by(w), forallvinc,T),
>

for all 1 <i<n. Consequently, b;, is continuous from the right and b;; is continuous from
the left. Moreover, ifv € [c,T ], 1 <i<nand if b;(v) is continuous at v, then b;(v) =
bi.(v). Similarly, if b;,(v) is continuous at v, then b;; (v) = by, (V).

Proof: Let us prove that b;;(v) :u!i_rpv b;.(w), forall vin (c ,T ]. Since, from Lemma Al-
<

11 the function b;, is nondecreasing, we see that Jl_mv biu(W) = sup b (W). From
< w e [Q 77})
Lemma A2-8, we know that b;,(w) < by(v), for all win [c , v), and thus wll_er D (W) <
<

b;/(v). Take a sequence wy, Wo, ... in [c, V) which converges towards v and such that
lim b, (w,) = sup b;(w). From Lemma A1-10, we have P(i | w,,, by, (w,,) ) =
m— + o0 w e [c,v)

P(i | wy, ), thatis, P(i | w,, ) = (W, — b (w,,)) Prob(i wins | by, (w,,)), forallm >
1. Taking the limit of the previous equality for m — + oo and using the continuity with
respect to w of P(i | w ) (see Lemma A1-10), we find P(i | v) = (v — sup by (w))

w € [c,v)
Prob(iwins | sup  b;,(w)). From the definition of b;(Vv) (see (8), Section 3), it follows
w € [c,v)

immediately that sup ~ b;,(w) > by(v). Since we have proved the two inequalities, we
w € [c,v)

obtain the equality sup b, (w) = by(v). The equality b;,(v) = lim b;(w), forall vin
we [c,v) s

[c ,T ), can be proved similarly.

The function by is continuous from the left since lim by(w) = sup  by(w) =
w2y w € [c,v)
sup sup bjp(X) = sup  bu(x) = by(v), forall vin[c,T ). Similarly, b, is

w € [c,m)€ [c,w) T €lc,v)
continuous from the right.

The second part of Lemma A1-13 follows immediately from the first part and the facts
bs(c ) = b (c ) (from Lemma Al-3) and b;;(T ) = b;,(T ) (from Lemma A1-12). ||
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Lemma Al-14: |If (By, ..., B,) is a Bayesian equilibrium of the first price auction with
mandatory bidding, then the functions b;; and b;, are strictly increasing over [c , T |, for all
1<i<n. If(By, ..., B,) is a Bayesian equilibrium of the first price auction with voluntary
bidding, then either the functions b; and b;, are strictly increasing over [c , T ], for all
1 <i < n, or there exists j such that the functions b;; and b;, are strictly increasing over [c ,
T |, for all i # j, and there exists w' in (c , T ) such that b; and b;, are equal to ¢ over [c ,
w') and are strictly increasing over (W', T |.

Proof: From Lemma A1-11, the functions b; and b;, are nondecreasing over [c, T |.
Suppose that b;; is constant over an interval (u, w) C [c,T |, withu < w. Then, from
Lemma A1-13 b (v) = by, (v), for all v in (u, w), and by (v'), with v' € (u, w), is a mass
point of the distribution of b;. If this mass point is strictly larger than c , it contradicts Lemma
Al-7 and Lemma Al-14 is proved. We can thus assume that b;;(v) = b;,(v) = ¢, forall v
in (u, w). From Lemma A1-8 and the obvious inequality b;;(x) > ¢, forall xin (c ,T |, we
have b;;(v) = b;,(v) = c ,forallvin[c ,w).

In the case with voluntary bidding, Lemma A1-9 implies that there can be only one
such i. The proof is complete in this case when we define w' as follows, w' = sup { w € [c ,
T] | by(v) = by(v) = c,forallvinic,w) }.

In the case of mandatory bidding, it contradicts Lemma A1-9 and Lemma Al-13 is
proved. ||

Forall 1 <i < n, we define the function «; as follows,

(Al.2) aj(b) = sup{v € [c,T] [ bu(v) < b},

forallbin[c, 4+ co). Remark that since b;;(c ) =c , theset {v | b;(v) < b} is notempty.
We have gathered in Lemma A1-15 below some useful properties of the functions o, ..., ;.
Lemma Al1-15: If (3, ..., B3,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding and the functions «y, ..., «, are defined by (Al.2), then we can
substitute max to sup in the definition of «;(b), that is, c;(b) = max {v | b;(v) < b}, for
all 1<i<nand all bin [c, +0c0). The functions o, ..., «a, are continuous and

nondecreasing. Moreover, we have «;(b;(a;(b))) = «a;(b),foralll <i<nandallbin|c,
+ 00). Ifv < «;(b), then by, (v) <b. If a;(b) < v, thenb < by (v). When by is continuous
at a;(b), we have b = b;; (a;(b)), foralll <i<nandallbin[c, + oco). Ifb; is strictly
increasing over [v, v+ 6], where ¢ >0, then a;(by(v)) = ai(bu(v)) = v. If by is
continuous and strictly increasing over an interval (v, w), then «; is strictly increasing and is
equal to by’ over the interval (b;, (v), by(w)), for all 1 <i<n. If the function b; is
discontinuous at v, then «;(b) = v, for all b in [b;;(v), b, (Vv)).

Proof: Immediate from the definition of «; and Lemma A1-13. ||

Lemma A1-16: Let (G4, ..., §,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding. Then b;(c;(b)) < b < b, (a;(b)), for all 1 <i<n and all
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Fi(a;(b)) and Prob(i wins | b) = ﬁ Fj(a;(b)), forallb > ¢ andall 1 <i<nandalso
j=1

J#
in the voluntary bidding case for b = ¢

c <b <mn, with n defined in Lemma Al-12. Moreover, [5;*F;]» ({OUT}U[c, b]) =

and i = jasin Lemma Al-14.

Proof: As an immediate consequence of the definition of «; and from the remark before the

statement of the lemma, we see that b;;(«;(b)) < b, forallb >c¢ and forall 1 <i<n.

Assume that b < nand b;,(a;(b)) < b. Since b;,(T) = nand b, is non decreasing, we see

that o;(b) < ©. From Lemma Al-12, we have b;,(«;(b)) = lim  by(w). Since
w3 a;(b)

biu(c;(b)) < b, there exists w > «;(b) such that b;(w) < b, which contradicts the

definition of a;(b) and we have proved the first part of Lemma Al-15.

The probability [G;xF;]o ({OUT}uUlc, b]) can be written equivalently as
Prob({b; = OUT} U {b; <b}), forb > c. From Lemmas Al-3 ad Al-13, we see that if
b>c, then a;(b) >c . Forall v < «;(b), we have b;(v) = OUT or b;(v) < b with
probability one. In fact, b;(v) = OUT or b;(v) < b;,(v), with probability one, and b;,(v)
< by(ai(b)) < b. Moreover, forallv > «;(b) we have b;(v) > b with probability one.
In fact, b;(v) # OUT and b;(v) > by (v), with probability one, and b;;(v) > b;,(a;(b)) >
b. We do not have to worry about the case b; = b, since from Lemma A1-7 the probability of
this event is equal to zero. Moreover, F;({a;(b)}) = 0. Consequently, we obtain [3;xF;],
({OUT}uUc, b]) = Fi(ai(b)). The rest of Lemma Al-16 when b > ¢ is an immediate
consequence of the previous result and of Lemma A1-10.

When bidding is voluntary, b=c¢ and i=j as in Lemma Al-14, [BixFi]s
({OUT}U[c, b]) = [BexFir]2 ({OUT}) = Fi(ax(b)) = Fr(c), for all k# i, and thus
Prob(iwins | b) = [] Fr(ax(b)). ||

=
Lemma A1-17: Let (G4, ..., §,) be a Bayesian equilibrium of the first price auction with or

without mandatory bidding. If b > c is a point of increase (to the left or to the right) of «;,
that is, if «; is not constant on any neighborhood of b, then b = b;(a;(b)) or b =

bm(O&i (b))

Proof: Letiand b be such that «; is not constant on any neighborhood of b. If n is defined in
Lemma Al1-12, «; is equal to T over [, + oco) and thus b < 7. Assumethatb # bj;(«a;(b))
and b # Db, (a;(b)). Lemma Al-16 then implies b;(a;(b)) < b < b (ai(b)). The
interval (b;(a;(b)), b (c;(b))) is a neighborhood of b over which «; is equal to the constant
a;(b). We thus obtain a contradiction and Lemma A1-17 is proved. ||

Lemma A1-18: Let (54, ..., §,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding and let v be an element of (¢, T ). If i is such that b is
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continuous over a neighborhood of v and b;;(v) > ¢, then Prob(i wins | b) is differentiable
atb =by(v)and

Prob(i wins | b)
v—b !

& Prob(iwins | b) =
ifb = b;(v). Whenv =T, this derivative is a left-hand derivative. Moreover, when bidding
is voluntary, when v = w' as in Lemma Al1-14 for i = j, that is, when by; is strictly increasing
over (w', T ] and equal to ¢ over [c , w'], and when b;; is continuous over a neighborhood of
v, then the equality above also holds if the derivative is a right-hand derivative.

Proof: The proof is similar to the proof of Lemma 3.6 in Griesmer, Levitan and Shubik
(1967). Letiand v be as in the statement of the lemma. There exists e > v — ¢ > 0 such that
b;; is continuous over (v — ¢, v]. From Lemma A1-13, b; = b, over this interval. From
Lemmas Al1-9 and Al-1, we thus see that 3; is pure and the bid function is equal to b;. We
also denote this bid function by 3;. From Lemma A1-14, 3; is strictly increasing over (v — e,
v]. The function «; defined in (A1.2) is equal to the inverse of j3; over the interval (3;(v — €),
Bi(v)] (see Lemma A1-15).

Let d;, d, ... be asequence in (5;(v — €), B;(v)) such that d, < G;(v), forall k > 1,
and dj, = 3;(v), as k = + oco. From the definition of an equilibrium, we have

(v—pi(v)) Prob(iwins | Bi(v)) > (v—dg) Prob(iwins | dg),

for all k > 1. Substituting { (v—3i(v)) + (8i(v)—dx) } to (v—d;) in the above
expression, regrouping and using the fact that d, < (;(v), we obtain

Prob( i wins | 3;(v)) — Prob(ii wins | dj) > Prob( i wins | dj)
Bi(v)—dy = v=3i(v)

for all kK > 1. From Lemma A1-10, Prob( i wins | dj) is a continuous function of dy.
Consequently, the above inequality implies

P Prob( i wins | 3;(v)) — Prob(ii wins | dj) Prob( i wins | 5;(v))
(Alg) I_I’m—:_ngo ﬂi(v)*dk 2 V*ﬂi(v) ==,

For all k > 1, o;(dg) is in (v —¢, v). Again from the definition of a Bayesian
equilibrium, we have

(ci(dy) — dy,) Prob(iwins | dy) > (e:(dy) — B:(v)) Prob(iwins | 8;(v)),

for all k > 1. Substituting { («;(dx) — 5;(v)) + (8;(v) —dg) } to (;(dg) — di) in the
above expression, regrouping and using the fact that d;, < (;(v), we obtain

Prob(i wins | 5;(v)) — Prob(ii wins | d;) Prob(i wins | di.)
ﬂj(V)—dk - (li(dk)_ﬁi(v) !
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for all k > 1. Using the continuity of «;(d;) and Prob( i wins | dx) with respect to d;, we
find

: Prob( i wins | 5;(v)) — Prob( i wins | d) Prob( i wins | ;(v))
(AL4)  limoup PSRl ela) o g,

The inequalities (A1.3) and (AL.4) imply the equality lim ~ Prob(iwins] f’gY()j)derOb<‘W‘”S [ d)
k— 4+ oo T

%w Since dy, dq, ... is an arbitrary sequence converging to 3;(v) from

below, we find that the left-hand derivative of Prob( i wins | b) exists at b = ;(v) and is

equal to %’W Proceeding similarly, it is possible to prove that the right-hand
derivative exists as well, if v <T, and is equal to the same value. Lemma A1-18 is thus

proved when g; is strictly increasing over (v — ¢, v|.

The two other results of Lemma A1-18 are proved by taking the limit forv—»T and v
— W' (we use properties similar to the one described in footnote 11). ||

Lemma A1-19: Let (54, ..., (,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding. Assume that there exist0 <j<n,b € (c,T)ande > 0such
thatb — ¢ > ¢ and «; isconstant over (b — ¢,b + ¢),forall 1 <i <j, and ay, is strictly
increasing over (b — ¢, b + ¢), for all j <k <n. Then the functions c;;, ..., o, are
differentiable over (b — ¢, b + ¢), differentiable on the right at b — ¢, differentiable on the
left at b + ¢ and form a solution over the interval [b — €, b + ¢] of the following differential
system considered on the domain D; = { (b, aji1, ..., o) € R | ¢ b < a, for
allj <k <n},

d _ 1 N2 5 1 :
(AL.5) a5 INFr(an (b)) = 1) { (ak(b)—b +lz‘;rl @ (0)=b }yl < k <n,
=J
14k

where the derivative at b — ¢ is a right-hand derivative and the derivative at b + ¢ is a left-
hand derivative or, in using matrix notation,

(A1.6) LLNF (a(b)) = M.I(a(b), b),

where LNF («(b)) and I(«(b), b) are (n —j) x 1 matrices and M isa (n—j) x (n—j)
matrix defined as follows,

[InFj 1 (ajia(b)) | _ Oéj+1(1b)*b —
LNF (a(b)) = [(a(b), b) =
I0F, (b)) | | i |
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(=1)(h—j-2) 1
1 (=1)(n—j—2) 1
1 (=1)(h—j-2)
(n-j-1) 1 1
(=1)(h-j-2)
i 1 1 1 (=1)(n—j—2)

with a(b) = (ajs1(b), ..., o (b)).

Proof: We know that «; is strictly increasing over (b — ¢, b + ¢), forall j < i < n, and thus
that b;; is continuous over (a;(b — €), a;(b + €)). From Lemma A1-18, Prob(i wins | b) is

differentiable and & Prob(i wins | b) = w or, equivalently,
db v—b

(AL.7) g InProb(iwins | b) = 5,

over (b — €, b + ¢), forallj < i <n. Remark that from Lemma Al-2andb > c , we have

n

Prob(i wins | b) > 0. From Lemma A1-16, we know that Prob(i wins | b) = T[]
(=
j
Fr(ar(b)), forallb > ¢ andall1 <i<n. Here [] Fx(ax(b)) is constant over (b — ¢, b
k=1

+ ). Denote by K the value of this constant. We have K > 0. We obtain Prob(i wins |
by = K H Fir(ax (b)), forall bin

k=j+1
k#i

(b — ¢, b + ¢)andall j <i<n. Substituting its value to Prob(i wins | b) in (A1.7), we
obtain

i 2 InFi(aw(b) = TOET
=iy

forallj <i<nandforallbin(b — ¢, b + ¢), or, in matrix notation,
(A1.8) £ A .LNF(a(b)) = I(a(b), b),

forallbin (b — ¢, b + ¢), where LNF(a(b)) and I(«(b), b) are defined as in the statement
of the lemma and where A isthe (n —j) x (n — j) matrix defined as follows,
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= O
[ = BTSN
O -

=l
o - -

It is not complicated to verify that A is regular and that A=! = M, with M defined as in the
statement of the lemma. From (A1.8) we see that A . LNIF («(b)) is differentiable over (b — e,
b+¢€). Since LNF(a(b)) = M. (A .LNF(«(b))), LNF(a(b)) itself is differentiable over
(b — €, b + €) and from (A1.8) again we obtain (A1.6).

The proof of Lemma A1-19 is over (see footnote 12) if we take the limits of (A1.5) for
b 2 b — eand forb 2 b + e and we make use of the continuity of oy, and the fact o (d)

> d,foralldin(c,T]. ||

Lemma A1-20: Under the assumptions of Lemma A1-19, we have

n d 1 n 1
. ® InFi(ax (b)) = -1 Z a(b)—b’
k=1 k=j+1

for all b in [b — ¢, b+ €], where the derivative at b — € is a right-hand derivative and the
derivative at b + € is a left-hand derivative.

Proof: Immediate from (AL.5). ||

Lemma A1-21: Let (G4, ..., §,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding and 7 be as defined in Lemma Al1-12. Then, for all b in (c , n)
there exist at least two indices j and j', with j # j', such that b is a point of increase of «; and
Oéj'.

Proof: Let b be an element of (c , ). We first prove that, for all b in (c , n), there exist at
least two indices j and j', with j # J', such that b is a point of increase of «; and ;. Suppose
that this is not the case. Then there exists i such that, for all j # i, b is not a point of increase
of a;. From Lemmas A1-16 and A1-17, we know that bj;(a;(b)) < b < bj,(«j(b)), for all
j # 1. Lethsuch that by, (ay(b)) < <rr]1€in< bru(ax(b)). From Lemma Al-16, by, (ay (b))
S SN
> b. If by, (ap(b)) = b, thenh = iand m;xh bji(a;(b)) < b and thus _m;xh bji(a;(b))
J J
< bpy(an(b)). If bpy(an(b)) > b, then from Lemma Al-6 we have _mixh bji(a(b)) < b
J

and thus again _mixh bji(aj(b)) < bpyu(an(b)). Bidder h's payoff if his valuation is equal to
J
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ap(b) and he submits ]‘T;z.)%l bji(a;(b)) is strictly larger than his payoff if his valuation is still
J

equal to v, (b) and if he submits by, (v (b)). In fact, his probability of winning is the same
but his payment in case of winning is strictly smaller. This contradicts Lemma A1-10 and the
definition of an equilibrium and we have proved that there exist at least two indices j and j',
with j # J', such that b is a point of increase of a;; and oy, for all biin (¢ , n). Lemma Al-21
is thus proved. ||

Lemma A1-22: Let (54, ..., (,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding. Assume that there exist 1 < i < n and an open subinterval (d', d)
of (¢ , n], such that «; is constant over (d', d). Then o;(b) > «;(b), for all b in (d', d) and
all j # isuch that b is a point of increase of «;, that is, such that «; is not constant on any
neighborhood of b.

Proof: Letiand (d', d) be as in the statement of the lemma. We first prove that if b is a point
of increase of o, then a;j(b) > «;(b). Assume that there exist j # iand b in (d', d) such
that oj(b) < «;(b) and b is a point of increase of «;, that is, «; is not constant on any
neighborhood of b. Since b > ¢ , we see from Lemmas Al-3 and A1-13 that a;(b) > C .
From Lemma A1-17, b is either equal to bj(a;(b)) or bj,(c;(b)). From Lemmas A1-10 and
Al-16, we thus have

P( | aj(0)) = (a;(b) —b) TTF(ax(b)) = (a;(b) —b) Fi(u(b)) TT Fi(an(b)).

k#j k#j,i

Let us denote by b' the value of the function b;; at a;(b), that is, b' = b;; (a;(b)). Of course,
from the definition of «;(b) (A1.2), we have b' < d' < b. From Lemma Al-15, we have
a;(b") = a;(b). Ifb' =c , from a;(b) = a;(b") > ¢ and Lemma Al-14 we know that i = j as
in Lemma Al-14. Consequently, Lemma A1-16 implies that in all cases (b'=c¢c orb' >_c¢)
we have,

P(i | ai(b)) = (ai(b) =b) [TFr(ax(D)) = (ci(b) = b) Fj(a;(b7)) TT Fr(aw(b)).

ki ktj,i
Since P(i | (b)) > 0, we see that F;(c;(b')) > 0. From the definition of an equilibrium,
we know that P(j | a;(b)) > P(j | a;(b ),“6), forallb > b, and thus? P(j | a;(b)) >
Jim P(j| ej(b), b) = (ej(b) —Db) Fi(a;(b")) TT Fr(ax(b)). Substituting its value to
b . b' kj,i

P(i | a;(b)), (@j(b) = i(b)) + (ai(b) —b) to (aj(b) — D) and

(aj(b) — (b)) + (ai(b) —b") to (a;(b) —b’) and simplifying by F;(c;(b') Fi(ci(b))
(which is strictly positive since «;(b) > ¢ ) give
(AL9)  (a;(b) —ai(b)) IT Fr(axr(b)) + (u(b) —b) [T Fi(ax(b))
k#3,i k#jsi
> (aj(b) — (b)) [T Frlan(0) + (s(b) — b) TT Fr(on(b)).
k#j.i k#j.i
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We also know that P(i | a;(b)) > P(i | ai(b), b) = (ai(b) —b) Fj(ej(b)) IT Fr(ax(b)).
k+j,i

Sinceb > b'(and «;(b) > b), we have P(i | a;(b)) > (ci(b) —b) F;(a;(b") I Fr(ar(b)).
k#ji

Substituting its value to P(i | a;(b)) and simplifying by F;(c;(b")) > 0, we obtain

(AL10)  (ci(b) =) [T Frlax(b’)) = (ai(b) =) IT Fi(a(b)).

k#ji k#ji

Combining the inequalities (A1.9) and (A1.10) and subtracting (c;(b) — b) ] Fr(ax(b)), we
k+j,i
obtain the inequality below,

(a(0) — as(b)) { T Filex(®)) — TI Fa(an(6)) } > 0.

k35 k#ji

The function «; is constant over (b', b). Consider b" in (b, b). From Lemma A1-21, there
exists k # j such that b" is a point of increase of ;.. Thus we have Fj(ai(b)) > Fi(ax(b)
and ] Fr(ax(b)) — I] Fr(ax(b’)) > 0. Consequently, we obtain c;(b) > «;(b).
k#ji k#jyi

Assume now that o;(b) = «;(b). We know that bj(a;(b)) =b or bj,(a;(b)) = b.
Assume that b;;(«;(b)) = b (the proof in the other case is similar). Since b is continuous to
the left, by(c ) = ¢ and by has at most a countable number of discontinuities, there exists
w < a;(b) such that bj(c;(b)) > by(w) > d"and by is continuous at w. Thus bj;(w) is a
point of increase of o in (d', d) and «;(bj(w)) =w < «o;(b). This contradicts the first part
of the proof and thus «;(b) = «;(b) is also impossible. ||

Lemma A1-23: Let (34, ..., (,) be a Bayesian equilibrium of the first price auction with or
without mandatory bidding. Assume that by is discontinuous at v;, that b is discontinuous at
v, with j # i, and that (b;;(v;), bi(vi)) N (bji(v)), bj,(v;)) # 0. Then we have (b;(v;),
biu(Vi)) S (Bu(V)), bju(V;)) OF (05(V;), bju(V))) S (bir(Vi), biu(Vi))-

Proof: Assume that we have b;;(v;) < bj(v;) < b (v;) < bj,(v;). Thusby(c ) >c and
bj is strictly increasing over a neighborhood of v; (see Lemma A1-14). Since bjy(v;) €
(bi(vi), bi(v;)), Lemma Al-22 implies «;(b;i(v;)) =v; > oi(bj(v;)) = v,. From
Lemma Al-14 and b;(v;) > c , we see that b is strictly increasing over a neighborhood of
v;. From Lemma Al-15, we then have «;(b;,(v;)) = v;. Consequently, a;(b;,(v;)) =v; >
ij(bw(vl» =V, and Vi = V,.

Since by is strictly increasing over a neighborhood of v;, bj(c ) =c and by is
continuous from the left, there exists w; < v; = v; such that b;(v;) < by(w;) < bj(vy)
and by is strictly increasing over a neighborhood of w;. This is impossible however, since
from Lemma A1-22 we should have a;(by(w;)) =w; > a;(bu(w;)) = v; and Lemma Al-
23 is proved. ||
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Lemma A1-24: Let (3, ..., B,) be a Bayesian equilibrium of the first price auction with
voluntary bidding. If j and w' are as defined in Lemma A1-14, then b is continuous at w',
that is, bj;(w') = b, (W) =c .

Proof: We already know that by is continuous from the left (see Lemma A1-13) and thus
bj(w') =c . Assume that b,,(w') > c . Consider k # j. From Lemma Al-14, by; is strictly
increasing over [c, T]. Since by,(c ) =c and there is at most a countable number of
discontinuities, there exists u in (c , w') such that b;;(u) < b, (w'). This contradicts Lemma
Al-22 and Lemma Al1-24 is proved. ||

Lemma A1-25: If (3, ..., (3,) is a Bayesian equilibrium of the first price auction with or
without mandatory bidding, then the strategies (3, ..., (3, are pure over (c, T | and the
functions a4, ..., «,, are differentiable and strictly increasing and verify over (c , 7|, where

7 is defined as in Lemma A1-12, the following system of differential equations considered on
the domainD = { (b, a1,...,,) € R | ¢ ,b < a4 foralll <i<n},

LLNF(a(b)) = M.I(a(b), b),

where LNF («(b)), I(«(b), b), M and «(b) are defined as in the statement of Lemma A1-19
withj = 0.

Proof: Suppose that there exists 1 <i<nandv; € [c,T ] such that b; is discontinuous at
v;, that is, such that b;;(v;) < b;,(v;). Without loss of generality, we can assume thati = 1.
Either o, is strictly increasing over all open subsets of (by;(v1), by, (v1)), for all kK # 1, or
there exists K # 1 and (dg, d;) € (by;(v1), biu(v1)) such that «y is constant over (d, dx')
and d; < d;'. As aconsequence, in this latter case by; is discontinuous at oy (d;) = v and
from Lemma A1-23 we have (by;(Vi), bru(Vi)) € (byi(vh), bru(ve)) or (by(vy), biu(vh)) C
(bxi(Vk), bru(Vk)). There is no loss of generality in this case to assume that k =2 and
(b (V) bru(vi)) € (by(vi), biu(vy)). Also in this case, we repeat this construction and as
many times as it is possible. We then see that, without loss of generality, there exist 1 < j <n
and vy, ..., v;in [c,T ] such that by (vi) < ... < by(v)) < bu(vy) < ... < by(v1)
and such that o1, ..., oy, are strictly increasing over (bj(v;), b;,(v;)). Moreover, j <n— 1.
Otherwise, no «y (in the case j =n) or only «, (in the case j =n — 1) would be strictly
increasing over (b;(v;), b;,(v;)) and it would contradict Lemma A1-23.

From Lemma A1-19, we know that the functions a1, ..., o, are differentiable over
(bj1(v;), bju(v;)), differentiable on the right at by (v;), differentiable on the left at b;,(v;) and
form a solution of (A1.5) over this interval. Lemma A1-24 implies that bj;;(v;) > ¢ . From
Lemmas Al1-10 and Al1-16, we have P(j|v;) = (v; —bj(v;)) II Fr(ar(bi(v;))) =

k#j

(v; = bju(v;)) TT Fr(ow(bju(v;))). Moreover, for all bin [bj;(v;), bj,(v;)], we have P(j | v;,
k#j

j—1
b) = (v;j—b) [ Fi(ax(b)). However, for all b in [b;(v;), bj,(v;)], the product ]
k#j k=1
Fr(ax(b)) is equal to a strictly positive constant K. From the definition of a Bayesian
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equilibrium, P(j | v;) > P(j | v;, b), forall b in [b;(v;), bj,(v;)]. Substituting their values to
P(j | v;) and P(j | v;, b) and simplifying by K, we obtain

(v;—bi(v)) I Fr(an(bu(vi)) > (vj—b) I Filaw(b)),

k=j+1 k=j+1

(v, —bu(v;)) 11 Frlondu(v))) > (v;—b) II Filax(b)),

k=j+1 k=j+1

for all b in [b;;(v;), bj,(v;)]. As a consequence, the function (v; — b) ﬁ Fr(ax (b)) and,
k=j+1

thus, also its logarithm In(v; —b) + > InFy(ax(b)) reaches its maximum over [bj;(v;),
k=j+1
bj.(v;)] atbj(v;) and at b;,(v;). If they exist, the left-hand derivative of In(v; —b) + >
k=j+1
InFj(ax (b)) at b = bj,(v;) must thus be nonnegative and the right-hand derivative of the
same function at b = bj,(v;) must be nonpositive. From Lemma A1-20, we see that the
derivative exists and is given by the equation below,

9 n(v; — b) +y LIF(on(d) = o5 + i > TOET
=j =J

for all b in [bj;(v;), bj,(v;)]. At the lower extremity of this interval, the derivative is a right-
hand derivative and at the upper extremity of this interval, the derivative is a left-hand

n

H : -1 1 1
derivative. Consequently, we have i B ey k:ZjH PR IRy SEE TR RS 0 and
) T D kZH sy = 0. We can rewrite the two inequalities above
=J
as follows,
S vi—hi(v)) i - Vi—bju(V;)
(Alll) k;l ak(bﬂ(v‘,-))—bﬂ(v]-) S (n J 1) Sk;‘rl ak‘(bju(vj))_bju(Vj)l
However, (X:’(’T_)Eb is a strictly decreasing function of b. In fact, each term (X:’(’T_)Eb is

k=j+1
strictly decreasing in b because, for example, its inverse is equal to 1 + and is a
strictly increasing function of b since from Lemma A1-22 oy, (b) > v;, for all k > j. We know

3 vi—b;(v) S Vb, (v)
that b;;(v;) < bj,(v;) and thus we havekzzj+1 AR T AR kzsz AT Bn,) b))
which contradicts (A1.11). Thus, our assumption made at the beginning of the proof must be
wrong. That is, there is no b;; which is discontinuous and the functions by, ..., b,; are

continuous and it is enough to apply Lemma A1-19 to end the proof of Lemma A1-25. ||

Oék(b)fvj'
Vj*b
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Proof of the necessity parts in Theorems 1 and 2 (Section 3): Immediate from Lemmas Al-
25, A1-3, Al1-2, A1-9 and A1-14. ||

Appendix 2.

We show the details of the proof of Theorem 3 (Section 4). First we prove Lemma
A2-1 below.

Lemma A2-1: Let the assumptions of Section 2 be satisfied. Let (a4, ..., ;) be a solution
over an interval (v, 7'], withc < v < o' < T, of the differential system (2) considered in
the domain D. Then the following equations hold true over the interval (-, ~'] and for all 1
<ij<n,

(A2.1) 4 ; In Fr.(ax (b)) = ai(bl)—b’
k#£i

(A22) g InFi(ay(b)) — & NFi(i(®) = 255 — wpis:

Proof: By summing all equations in (6) except the equation corresponding to «;, we find
(A2.1). It suffices to subtract the equation in (6) corresponding to «; from the equation in (6)
corresponding to o in order to prove (A2.2). ||

We now prove Lemma A2-2 below which implies that a solution of (2, 18) consists always of
strictly increasing functions.

Lemma A2-2: Let the assumptions of Section 2 be satisfied. Let («q, ..., «,) be a solution
over an interval (v, v'], withc <~ < ~' <T, of the differential system (2) considered in the
domain D and such that Sai(y) > 0, ..., Za,(7) > 0. Then Say(b) > O, ...,
La,(b) > 0, forallbin (v, y].

Proof: Forall 1 <i < n, consider b'; defined as follows, b; = inf {b' € [y,7] | La;(b)
> 0, for all b in (b', v]}. From equations (2), we see that bal, %an are continuous
over (v, 7] Since Lai(7) > 0,..., Sa,(y) > 0,wehaveby < +,...,b, < 7. We
want to prove that S (b) > 0,..., Sa,(b) > 0, forallbin (v, ] thatis, thatb', = +,
.., b, = ~. From their definitions, we know that by > ~, ..., b, > ~. We will have
thus proved Lemma A2-2 if we prove thalt <ml?X< i by < .

Assume that max b’y > ~. Letibesuchthatb; = max b'. From the
1<k<n 1<k<n

continuity of dba“ we have %ai(by) = 0. Moreover, since b, > b’ we also have
ddbak(bli) > 0, forall 1 < k < n. From the equation in (6) corresponding to «;, we see that
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(ai(b) = b) FFi(as(b) = iy { (~D(-2) + X 2B=% 1,

forall b in (-, 7]. Taking the derivative of the equation above, we obtain

(A2.3)  ${(ey(b) — b)SInF;(cy(b))} =

= @i { S (Gol) - Doxb) ~b) — (alb) - b)(Gowd) - D] }
k:;é%

forall bin (v, 7.

If we substitute b'; to b in equation (A2.3), we see that the expression between brackets
in the sum in the R.H.S. of this equation is equal to (a;(b;) — ax(b%)) — (a;(b) — b%)
Ly (b%). Since £a;(b) = Oand Say(b;) > 0, forall k, we have SInF;(a;(b%)) = 0,
LInFy(ax(by)) > 0, for all k. Equation (A2.2) implies a;(b;) < ay(b';). Consequently,
the term between brackets in the sum in the R.H.S. of (A2.3) is nonpositive. Moreover, there
exists k such that the corresponding term is strictly negative. In fact, from equation (A2.1)
there exists k = i such that %ak(b'i) > 0. Consequently, from (A2.3) we see that the
derivative of (a;(b) — b) &InF;(a;(b)) ath = b'; is strictly negative and this function is thus
strictly decreasing in a neighborhood of b';. However, since %ai(b'i) = 0 and thus
21nF;(ci(by)) = 0, the value of this function at b = b’; is equal to zero. Consequently,
there exists ¢ > 0 such that («;(b) — b) %InFi(ai(b)) < 0, forall bin (b';, b; +¢€). Since
(a;(b) —b) > 0, forall b in (v, 7], we obtain £InF;(c;(b)) < O, for all bin (b';, b'; + ¢).
This contradicts the definition of b'; and we have proved Lemma A2-2. ||

As we see in Lemma A2-3 below, it is possible to obtain bounds for the functions
¢ = aja; !, which “connect” two components of a solution of the problem (2, 19). From the
definition of ¢;;, we see that ¢;;(v) = ;'(8i(v)) can be interpreted as the valuation at
which bidder j bids the same bid as bidder i at v.

In Lemma A2-3, we use the function (j;, with1 < i,j < n, defined as follows,

(A24)  Ci(v) = F;l(Fi(v min F{<W)>,

; Fiw) _
(A2-5) FZ(WﬁQ)Uﬂ szll'? <c Fi(W) - Fj(g )
When w; = ¢, <min<_ ?m in the L.H.S. of the equality above is defined as the
Wj; SWSC !
continuous extension of<min< B EJEVVQ at ¢ , that is, its limit for v —» ¢ . The function F;(v)
VSWSsC !
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v <

min< _ F'_'(W) is continuous and strictly increasing over (¢ ,T |. Itisequaltol > F;(c )atv

wscC !

_ i i Fi(w) Fi(v) i , i Fi(w)

=T. Smc% Sr&mﬁg ‘W S e forallvin (c,T ], we see that F*‘QSTJ”SE =)

< Fj(v), forall vin (c ,T ]. In particular, we see that the limit of F;(v) _min__ Ei(w) for v
< w<e FWw

— C is not larger than F;(c ). As a consequence, there exists one and only one wj; satisfying
(A2.5). Moreover, we see that (j;; is a strictly increasing continuous function, equal to T at
v=T and that (;(v) < v, forall vin [wj, T]. The value F;((;) at v is actually the
maximum of the values taken by functions not larger than F; over [v, T | and which have the
same logarithmic derivative as F;. If (j; is extended continuously at wj;, we have ¢;;(w;;) =
¢ . The inverse ;' of ¢y is thus defined over (c , T ] and, if extended continuously, is such
that ¢;;'(c ) = wy;. Notice that if Fi(c ) = F;(c ) =0, thenwj; = w;; =¢ .

Lemma A2-3: Let the assumptions of Section 2 be satisfied. Let n be such thatc <n<T
and let (g, ..., «,) be a solution over an interval (v, n], with ¢ <~y <n<T, of the
differential system (2) considered in the domain D and such that a1 (n) = ... = a,(n) =
T. Then the function «; is strictly increasing over (v, n] and the functions ;! and
b5 = aja; ! are differentiable over (a;(y), T], for all 1 < i, j < n. Furthermore, the
following inequalities hold true,

Gi(w) < ¢ji(w) and ¢ji(v) < ¢j;'(v),

for all win (max(wj;, a; (7)), T ], allvin (a;(v),T]andalll < i,j < n, where the function
;i is defined in (A2.4, A2.5), forall 1 <i,j <n.

Proof: By substituting n and T to b and a;(b) (respectively) in (2), we see that dd—bak(n) =1
/ (n=Df(T)(T —n) > 0, forall 1 <k<n. FromLemma A2-2, we thus have & o (b)
>0, ..., %an(b) > 0, forall biin (v, n]. As a consequence, «; is strictly increasing over
(7, n] and the functions o; ! and ¢;; = «ja; ! are differentiable over (o;(v),T |, forall 1 < i,
j < n. We prove the inequality (;;(v) < ¢;i(v), forall vin («;(y), T]. This inequality is

immediate forv = T. Assume thenthatv < T. Letk > Obesuchthatk < min
v<w<<cT
Fji(w)

Ew Since the R.H.S. of the last inequality is not larger than 1, we have k < 1. Consider the
function X such that A(u) = F;'(kF;(u)). Foralluin [v,T ], we have A(u) < u. In fact,
this inequality is equivalent to kF;(u) < F;(u), which is an immediate consequence of the
definition of k. From the definition of A, we have F; (A(u)) = (kF;(u)), foralluin[v,T].
Taking the derivative of the logarithm of the last equality gives equation (A2.6) below

(A26) & InF,(\u) = & InF(u),

foralluin|v,T].

From equation (A2.2) with the change of variable b = «;'(u), we have the
following equation,
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(A2.7) % InF;(¢ji(u)) = % InF;(u) + [ddbai(bﬁb:n;l(w { ufaj;](u) - @ji(u)}a;](u)}’

for all uin («;(v), T]. Comparing this equation with equation (A2.6), we see that if A(u) =
¢ji(u) then & InFi(g;i(u)) < & InF;(A(u)). Infact, since A(u) < uwe have ¢;;(u) <
u and the expression between braces in (A2.7) is strictly negative. Obviously, A(T) <
F;'(Fi(t)) = T© = ¢;(c). We then apply Lemma A5-1, a variant of Lemma 2 in
Milgrom and Weber (1982),to [a, b] = [v,T], | = InF;(¢;(u)) and h =In F;(\) and we
see that In F;(A(u)) < In F;(¢;i(u)) and thus A(u) < ¢j(u), for all uin [v, T]. In
particular, we have A(v) = F;'(kF;(v)) < ¢;(v). The result then follows by making k tend

towards <min< _ E’E\VN"; The inequality ¢;; < @1 is obtain by inverting the inequality ¢;;
v w & ¢

< ¢ and using ¢j; = o |l

From the theory of ordinary differential equations, we know that under the
assumptions of Section 2, there exists one and only one maximal solution (¢, ..., v,) over
the interval (c , n] of the differential system (18) considered in the domain D which satisfies
the initial condition (19), forallc < n < T . From the equivalence of the systems (2) and
(18), (a1, ...y a) = (Fy(a1), ..., F, M (aby)) is the only maximal solution over (c , n] of (2)
considered in D which satisfies (19). Let (v, 1] be the definition sub-interval of the maximal
solution (a4, ..., ay), or, according to the terminology from Section 4, the maximal interval.
When the solution can be extended to the whole interval (c , 7|, that is, when v = ¢ , we say
that the solution is of type | (see Figure 3, Section 4). We denote by A, the set of parameters
C < n < T corresponding to such maximal solutions. Again from the theory of ordinary
differential equations, we know that, when the solution cannot be extended to the whole
interval (c, 7], the (n+ 1)-tuple (b, ¢(b), ..., ¢, (b)) has an accumulation point in the
boundary of D, or, equivalently, (b, «;(b), ..., «,(b)) has an accumulation point in the
boundary of D = { (b, a1, ..., ) € R*™ | ¢,b < o; < T,foralll <i<n}when
b 2 - From Lemma A2-2 and the initial condition (19), we can rule out «;(b) »T . The

case a;(y ) = ¢ , for some i, is impossible since, when v >¢ ,we have a;(y) > v > C.
In the only remaining possible case when v > c, there exists 1 <i<n such that
a;(y ) = (see Figure 4, Section 4). We then say that the solution is of type Il and the set of
parameters n in (c , T ) corresponding to such solutions is denoted by A;;. We obtain next a

result concerning the type 1 solutions.

Lemma A2-4: Let the assumptions of Section 2 be satisfied. Suppose that F;(c ) = ...
F.(c) = 0. Letn besuchthatc <n<T and let (g, ..., ay,) be a solution over the
interval (c , n] of the problem (2, 19) where the differential system (2) is considered in D.
Then, either ay(c ) = ... = a,(C) = € oray(C ), ...,au(C) > €.

Proof: Because (b, a, ..., «;,) lies in the domain D over the interval (c , n], we have a;(c ),
...,ay(c) > c. From Lemma A2-3 and from the definition of ¢;;, we know that (j; (e (b))
< a;(h) < ¢;'(au(b)), forallbin (c, n and forall 1 < i,j < n. Assume that there
exists i such that «;(c )=c . It suffices to make b tend towards c in the previous
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inequalities and to use the equalities (;(c ) = ¢ and g“igl(g) = c, to find the result
aj(c)=c,foralll < ij < n. |

Before obtaining results pertaining to type Il solutions, we prove Lemmas A2-5 and
A2-6 below.

Lemma A2-5: Let the assumptions of Section 2 be satisfied. Let (a4, ..., ;) be a solution
over an interval (v, '], withc <~ <+’ <T, of the differential system (2) considered in the
domain D. Suppose that there eXIsts 1 <'i < n such that baz(b) > 0, for all b in (v, +1.
Then the functions ¢;; = aya; ', 1 <j<n and j#1i, and 3, = o; 'are differentiable and
solutions over the interval (ai('y), a;(+")] of the following system of differential equations

considered in the domain D; = {(V, (@i ) jis @-) | ¢ <v<T, € <¢;; <T, B; < d;i,

B; <v,forall 1 <j < nsuchthat] #i,and G202 +2@ >o},
l;éz
L) Fi6i) s+ 2
d v (@i (V [ . . .
A28) 40:(V) = FG) Tow Tira +; L<j<nandj#i,
v—(3;(v) oh(v Bi(v)
1#1
fi -1
(A29) &Bi(v) = £3 (b

Inversely, if ((¢;i) 2, 5:) is a solution over an interval (w, w'], withc <w < w' <T, of the
system (A2.8, A2.9) considered on the domain D;, then o; = ¢;;3;!, for j # i, and o; = 571,
are differentiable and form a solution over the interval (3;(w), B;(w')] of the system (2)
considered in the domain D.

Proof: Let (o, ..., a;) be a solution over an interval (v, '], withc <~ <~+' <T, of the
differential system (2) considered in the domain D and let i be between 1 and n such that
dd—bozi(b) > 0, forall b in (v, +']. The function «; is thus strictly increasing with a derivative
strictly positive over the interval (v, 7]. As a consequence, the functions 3, = a; ! and
¢; = aja;', 1 <j<nandj# i, are differentiable over the interval (a;(7), o;(v")] and from

the equatlon in (2) corresponding to «;, we see that ((¢ji),i, 5;) lies in D;. Moreover,
(f—vqjji(v) = [%aj(b)]b:aﬁl(v) m for all v in (a;(7), a;(v")]. It then suffices to
substitute to %aj(b) and dd—v a;(b) the expressions given in equations (2) in order to find

equations (A2.8). The equation (A2.9) can be proved similarly.

Let ((¢;i);z, B;) be a solution over an interval (w, w], withc <w < w'<T, of
the system (A2.8)-(A2.9) considered on the domain D;. From equation (A2.9) and the
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definition of D;, we see that dd—vﬂi(v) > 0, for all vin (w, w]. Consequently, the functions

a; = ¢; 371, for j#1i, and a; = 3;! are differentiable over the interval (5;(w), 3;(w')]. By

applying the formula $a;(b) = [£6i(V)],p1) W and the equations (A2.8,
(2 W 7

U:Bi_l(v)

A2.9), we find that a; = ¢;;,6;!, j # i, and o; = 3;! form a solution over (3;(w), 3;(w')] of
(2)inD. ||

Through the change of variables (p, (x;i)jzi» pi) = (Fi(b), (Fj(¢;:(Fi')));z, Bi(F; 1)) and
its inverse (v, (¢ji)j2i Bi) = (F7'(p), (F; (xi(Fi))) sz pi(Fi)), the system (A2.8, A2.9) in
the domain D; is equivalent to the system (A2.10, A2.11) in the domain D; = {(p, (i) i
pi) | 0<p<l 0<x;i <1, pi<xjipi <F1(p), forall 1 <j<nsuch thatj#i, and

(0D s 1
ACETC IRV ET R }

I£i

-1)(n-2) 1

(
; . F 00— 2 o))
d. . X I#j H H H
(A2.10) goxgi(p) = 4 T — , 1<j<nandj#i,
Folo)-ni0) =5 Ft0qi(P)—ri(p)
I#i

d.(p) — 1 (n—1)
(A211) dppl(p) - p (-1)(n-2) +i 1
FoLo)-ni0) = Ft0qi(P)—ri(p)

I

The system (A2.10, A2.11) in its domain satisfies the standard requirements from the theory
of ordinary differential equations and we are thus able to apply the results of this theory
through (A2.10, A2.11) to (A2.8, A2.9).

Lemma A2-6: Let the assumptions of Section 2 be satisfied. Let (a4, ..., «y,) be a solution
over an interval (v, 7], withc <~ < ~' < T, of the differential system (2) considered in the
domain D. Suppose that there exists 1 < i < n such that Sa;(b) > 0, for all b in (v, 7.
Then the functions 3; = o;! and ¢;; = ooy !, j #1i, are differentiable over the interval
(ai(7y), ai(v")] and we have

(212) & {(v=4) [T Fulou) ) =TT Fulou),
izi Zi

T
S

forall vin (o (), a;(v")].
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Proof: Since %ai(b) > 0, for all b in (v, 7], the functions 3; = a; ! and b = ajoy

j # i, are differentiable over the interval («; (), a;(7")]. The function > In Fy(¢xi(V)) is
izt
differentiable over the same interval and its derivative is given by | % > In
k=1
ki
Fr(an(d)]s—p) —B;(v). Using equation (A2.1) withb = 3;(v), we obtain

& I ILROa) = &0
ket

all v in (i(), ai(+)]. Substituting { & [T Fe(6x(v))} /kH Fr(@w(v) to & In I
Fr(¢ri(v)) and rearranging, we find
L= 5W) TT Felou) } = 1T Falém(v),
i i
forall vin (o, (), a;(v")], and Lemma A2-6 is proved. ||

We now state and prove Lemma A2-7 from which properties of type Il solutions can
be derived.

Lemma A2-7: Let the assumptions of Section 2 be satisfied. Let  and v be such that
¢ <~y <n<T andlet (o, ..., a,) be asolution over the interval (v , n] of the differential

system (2) considered in the domain D with initial condition (19). If there exists j such that
aj(y) >, then Fy(ax(y ) >0, for all k # i. If there exists i such that o;(y ) = v, then
ai(y) = ~,forall but at most one k between 1 and n.

Proof: Assume that there exists j such that o;(y ) > . From equation (A2.1), we see that

n
- - d - - - d
the limit of 4 kz:jl In Fx(ax (b)) for b 27 exists and is equal to R Since g In
]
n
Fi.(au (b)) is strictly positive over (v, n], we see that every term in the sum ];1 % In
k]

Fi(ax (b)) is bounded for b 20 If there existed k # j such that Fj.(a.(y )) = 0, we would
have In Fy(ai(b)) - — oo, forb 20 and (f—b In F;.(ax (b)) could not be bounded, for b 2
7 . The first part of Lemma A2-7 is thus proved.

Assume next that there exist i and j such that a;; (v ) = v, aj(y ) # v (and thus i # j).
Because (b, o, ..., ay,) lies in the domain D over the interval (v, 1], we have a;(y ) > ~.

44



From the previous paragraph, % In Fi(ax (b)) is bounded, for b 20 and all k # j. From

(
equation (A2.2) and because & In Fj,(ay (b)) and & In F;(c;(b)) are bounded for b 22 and

for k # i, j, we see that ﬁ — $ is also bounded for b - ~. Consequently,

ay,(b) — b must tend towards zero as b 27 thatis, oy, (y ) =, forall k # j. We have

thus proved that ax(y) = ~, for all but at most one k between 1 and n, and the proof of
Lemma A2-7 is complete. ||

We now prove the monotonicity of the solution of (2, 19) with respect to 7.

Lemma A2-8: Let the assumptions of Section 2 be satisfied. Let (a, ..., a;,) be the solution
of the problem (2, 19) for a parameterc¢ < n < T and let (o', ..., a',) be the solution of
the problem (2, 19) for a parameterc¢ < n' < T withn' < n. Assume that («q, ..., ay)
and (a'y, ..., a',) are defined over the interval (v, n'], with v < n'. Then o';(b) > «;(b),
forallbin (y,nlandalll < i < n.

Proof: As in the proof of Lemma A2-3, we see that the functions a4, ..., «, are strictly
increasing. Consequently, a;(n') < «a';(n') = ©,foralll < i < n. Considerd in (v, 7],
defined as follows, d = inf{b € [v,7] | a(b) > a;(b), forall 1 <i<n}. We haveto
prove thatd = ~. We already know thatd < 7'. Assumethatd > ~. Letl <i<nan
index such that o’;(d) = «;(d). By continuity, there is at least one such index. From the
definition of d, we also have o';(d) > «;(d), forall 1 <j <n. Moreover, there existsj # i
such that o';(d) > «;(d). In fact, if it was not the case the solutions («, ..., a;,) and (o',
..., a'y) of the differential system (2) would be equal at d and would thus be equal over their
common definition domain (here we use the uniqueness of the solutions of (18) and, thus, (2)
with initial condition), which is impossible since ax (') < a'y(n) = T, foralll < k <
n. From equation (2), we see that %ai(d) is a strictly decreasing function of o;(d), for all j
# i. Consequently, Sa;(d) > fa'i(d). There thus exists § > 0, such that a;(b) >
o'i(b), forallb € (d, d+ 6). However, this contradicts the definition of d and Lemma A2-8
is proved. ||

Lemma A2-9: Let the assumptions of Section 2 be satisfied. The lower extremity v of the
definition interval of the maximal solution (a4, ..., «,) of the differential system (2) over (c ,
n] considered in the domain D with initial condition (19) is a nondecreasing function of €
c.c).

Proof: Consider n and ' such thatc < n' < n < T. Lety be the lower extremity of the
definition interval of the maximal solution («, ..., a;) of (2, 19) for the parameter ». Let
(a'r, ..., o'y) be the solution of (2, 19) for the parameter ' and let ' be the lower extremity
of its maximal definition interval. Suppose that ' > ~. In this case, we have yv' > ¢
and from Lemma A2-7 there exists 1 <i < nsuch that o/;(y') = ~'. From Lemma A2-8,
we know that o'; > «; over the intersection of their definition intervals. We would thus have
o' (b) > a;(b), forallbin (v ', n]. By making b tend towards ~ ', we obtain a'; (v") = 7'
> «;(y") , which is impossible since ~ ' belongs to the definition interval of the maximal
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definition interval of (a, ..., ay,) and o;(b) > b everywhere over this interval. We have
thus proved that v ' < ~ and that the lower extremity of the maximal definition interval is a
nondecreasing function of n. ||

As defined before Lemma A2-4, A, is the set of parameters n corresponding to type |
solutions.

Lemma A2-10: Let the assumptions of Section 2 be satisfied. Assume further that F;(c ) =

. = Fu(c) = 0. Let A'| be the set of all parametersc¢ < n < T in A, such that not all
values a;(C ), ..., a,(c ) of the maximal solution («y, ..., a;) of the differential system (2)
over (c , 7 con5|dered in the domain D with initial condition (19) are equal to ¢ . Then A’ is
an open set.

Proof: Let n be an element of A'|. The definition interval of the maximal solution (ay, ...,
ay, ) of the differential system (2) considered in the domain D with initial condition (19) is thus

equal to (c , n] and we have (see Lemma A2-4) a;(C ), ... , a,(c ) > c . Take i such that
. <rnlin< ai(c) = a;(c). From Lemma A2-5, we know that 8, = o;! and ¢;; = aja;?,
~ n

1 <j<nandj#i, form a solution over («;(c ), T ] of the differential system (A2.8, A2.9)
considered in D; such that 5;(C ) =n and ¢;;(C) =T, j # i. We see that (v, (¢;i(V))z,
Bi(v)), for v.= o;(c ), belongs to the domain D;. In fact, Bi(ci(C )) = €, ¢ji(as(C)) =
a;(C ), j# i, and the last denominators in the R.H.S.'s of (A2.8) and of (A2.9) are equal to
(Ji()n _2 + Z o = gl — + Z{ c — a,;(gl)—g} > 0, since o;(c ) < ay(c ),
l7é1 l;élj
for all 1 #i. From the theory of ordinary differential equations applied to the equivalent
system (A2.10, A2.11), we thus see that the solution ((¢;i);-i, B;) can be continued beyond
a;(c )overaninterval (v ,T],withc < v < a;(C).

Let € be an arbitrary strictly positive number. By decreasing e if necessary, we can
assume that e < «;(c ) —v . Consider a;(C ) —e > v . Since Gi(a;(C )) = ¢ and j; is
strictly increasing, we have (3;(a;(c ) —€) < ¢ . From the theory of ordinary differential
equations applied to the equivalent system (A2.10, A2.11), there exists 6 > 0 such that if n
< n' < n + 46, then the solution ((¢';;) i, B's) corresponding to 7' is defined at a;(C ) — €
and 3'(cii(c ) —€) < c. From Lemma A2-5, o'; = ¢';3 ", forj #i,and o'; = 8! form
a solution of (2, 19) for the parameter 7' and is defined at 3 (a;(c)—¢€) < cC.
Consequently, (a'y, ..., «'y) is not of type I, is of type | and o'1(C ), ... , a'n(C)
Since «; is strictly increasing, we have o';(5';(a;(C ) —€)) = ai(c ) —e < a'i(C).
ai(c)—€e > Vv > c,wehaveprovedthatifn < n' < n + 6thena’;(c) C
e A

If < n, Lemma A2-9 implies that v'=c and (a;', ..., a,') is of type I.

Moreover, from Lemma A2-8 we have ax(c ) > ai(c ) > ¢, for all k, and 7' belongs to A'.
The openness of A'; follows?!. ||

In the two next lemmas, we prove the continuity of the lower extremity of the maximal
definition interval of the solution of (2, 19) with respect to 7.

46



Lemma A2-11: Let the assumptions of Section 2 be satisfied. The lower extremity v of the
definition interval of the maximal solution («, ..., «,) of the differential system (2) over (c ,
n] considered in the domain D with initial condition (19) is a function of € (c ,T ) which is
continuous from the right at every , for which there exists 1 < i < nsuch that o;;(y ) =~ . In
particular, v is continuous to the right at », for all n in Ay;.

Proof. Let n be an element of (¢, T), v the lower extremity of the maximal definition
interval of the solution of (2, 19) corresponding to » and i an index such that o;(y ) = .
Let e be an arbitrary strictly positive number. Without loss of generality, we can assume that e
< T —~. From Lemma A2-5, the n-tuple ((¢;;);zi, 0;), where 3; = ;' and ¢, = ooy 7,
j # 1, is a solution of (A2.8, A2.9) over (y,T]suchthat¢;(T) = T,j # i,5(T) =
Obviously, v + ¢ belongs to the definition interval (v, T]. From the theory of ordinary
differential equations applied to the equivalent system (A210, A211), we know that there
exists 6 > Osuchthatifn < n' < n+ 6 then the solution ((¢';;)zi, ') of (A2.8, A2.9)
with initial condition ¢';;(T) = T,j # i, 84(C) = 7', is also defined at v +e¢. From
Lemma A2-5 again, o'; = ¢';;8 ", for j # i, and o’; = 3! form the solution of (A2.8, A2.9)
corresponding to n' and this solution is defined at 3;'(y +¢). Since 3i'(y +¢) < v +¢, we
see that v + ¢ also belongs to the definition interval of (a1’ ..., @,'). Consequently, v' <
7 +e. From Lemma A2-9, we know that v < . Consequently, |v'=~ | < eandy
is continuous from the right with respect to 7. ||

Lemma A2-12: Let the assumptions of Section 2 be satisfied. Assume further that
Fi(c)=... =F,(c)=0. The lower extremity » of the definition interval of the maximal
solution (v, ..., ay,) of the differential system (2) over (c , n| considered in the domain D
with initial condition (19) is a nondecreasing continuous functionof n € (c ,T ). The set Ay,
of parameters in (c , T ) corresponding to type Il solutions is open.

Proof: Let 7 be an element of (c, T ) and let y be the lower extremity of the definition
interval of the maximal solution (a4, ..., a,,) of the differential system (2) considered in D
with initial condition (19). We know from Lemma A2-9 that  is a nondecreasing function of
n. We prove that v considered as a function of 7 is continuous from the left. Suppose first
thaty = c, thatis, that the solution (ay, ..., o) is of type I or, equivalently, that n € A,.
From Lemma A2-9, we see that the lower extremity ' of the maximal definition interval of
the solution (a4, ..., «',) corresponding to ' < n is not larger than ¢ and thus is equal to
C . The lower extremity of the maximal definition interval is equal toc for all ' < nandis
thus continuous from the left at 7.

Suppose nextthaty > ¢ , that is, that (ay, ..., «,) is of type Il. Let e be an arbitrary
strictly positive number. By decreasing ¢ if necessary, we can assume thate < v — ¢c.

From Lemma A2-7, we have a;(y ) = v, for all but possibly one a;. Let 1 <i < n be such
that o;;(y ) = . Let ' be defined as follows,
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Since (j; is strictly larger than ¢ over (c , T ), we see that ' > 0. Since §; = a; b, we see
that 5;(y ) = ~. Letw be an element of (y, T ) such that

(A2.13) | Biw)—w | < §'/2.

From Lemma A2-5, the n-tuple ((¢;i);zi, Bi), Where ¢;; = ajo; !, j#1, is a solution of
(A2.8, A2.9) over (y,T ] such that ¢;;(T) = T, j#1i, 5;(T)=mn. From the continuity of
the solution of a differential equation with respect to the initial condition applied to the system
(A2.10, A2.11), we see that there exists 6 > O such thatifn— 6 < n' < n, then the solution
((@'5i)ji, B') of (A2.8, A2.9) such that ¢';;(T ) = T, j #1, 8(T ) = n', is defined at w and
thusw > o';(y ") and

(A2.14) | Bi(w) — Bi(w) | < ¢&'/2.

Consider ' such that n — 6 < 7' < nand ' the lower extremity of the maximal
interval of definition of the solution (a'y, ..., a',) corresponding to »'. Because v is a
nondecreasing function of 7, we have 7' < 7. From Lemma A2-5, the n-tuple ((qﬁﬂ)ﬁéi,
B), where 3; = o’; 1 and ¢'j; = o'jo';t, j # i, is a solution of (A2.8, A2.9) over (a'i(y"), T ]
suchthat ¢';;(C) = T,j # i,08%(C ) = n'. From Lemma A2-6 we have

S L= TR0 } = TTR@5)

forall vin (a'i(y '), T ]. Asaconsequence, we have

fioy T Res) v = w-giw) I F@uw) - (0'-5G) 11
o i i#i

Fi(di(v "),

and

From (A2.13) and (A2.14) we have (w — /3';(w)) < &' and we obtain fa%(w.) H Fi(6':(v))

J#z
dv < ¢&'and,since ¢';; > (i,
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[y RGOV dv < &

i

(RO
S =

From the definition of §', we have

—
;IQ
::3

G v < [ TTRAGv) av
7#1

LS.

I
I

This last inequality is possible only if o';(y') > ~ —e and we have proved that

lim o'i(y") = v and thus (as we show in the Addendum) the continuity from the left of the
nzn

<
lower extremity of the interval of the maximal solution of (2, 19) with respect to 7.

From Lemma A2-11, the lower extremity is continuous from the right at all  in Ay,. It

is thus continuous at all » in Aj. The openness of A then follows immediately from its
definition.

Let »** be the infimum of Aj. From Lemma A2-9 and from the openness of A, we
have Ay = (n™,T). Ifp* =c , Lemma A2-12 is proved. If n™* =T , the lower extremity
is always equal to ¢ , is continuous and Lemma A2-12 is proved. Assumec < n™ <T. We
have Ay = (c,n™]. From Lemma A2-10, A} C A, is an open set. Consequently n** ¢ A',
and a1(c) = ... = au(c) = ¢, where (aq, ..., «a,) is the solution of (2, 19)
corresponding to »**. From Lemma A2-11, the lower extremity is continuous from the right at
n*™. We have proved that + is continuous from the left and from the right and is thus
continuous at all  in [n**,T ). The lower extremity ~ is constant over (c , n**) (it is equal to
c ). Itis thus continuous over (¢ ,T ) and Lemma A2-12 is proved. ||

Lemma A2-13: Let the assumptions of Section 2 be satisfied. Ifn € (c,T = <max< ff
S1Tsn -
IT Fj(g“” (v)) dv), then the solution of the problem (2, 19) is of type I, that is,
=1
i#i
= If T — mi T FC dv, T ), wh - T
Y c n € ( . gmz'mgnfﬁ j];[l i€ ;;(v)) dv, T ), where ¢ . = (j over [wy;, T ]
i
and

¢y = C over [c,wj], forall1 < j,i < n, then the solution of the problem (2, 19) is of
type 11, thatis, v > c . Moreover, if  tends towards T then y tends towardsT .

Proof: Take nin (c,T —  max [ I Fi(¢; L(v)) dv) and assume that the
- i

[
<=

corresponding
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solution is of type II, thatis, v > c . Foralli's but possibly one, we have a;(y ) = v . Let
— n

i be such an index. From Lemma A2-6, we have [ H Fi(¢i(v)) dv = [ (v—5i(v)) ]I

J=1
J#L J#i

Fj(¢;:(v)) ],=5 and thus

al
’:]3

(A2.15) n=°t — [

X

Fi(¢5i(v)) dv

a
sl
S

From Lemma A2-3, we know that ¢; < g” , for all j, i. Consequently, we obtain

n=tT - [ HF ji (V) dv,

J#l

which contradicts the choice of . We thus have v = ¢ and the first part of Lemma A2-11
is proved.

Takenin (T — min_ [ [] F;(¢ .(v)) dv,T ) and assume that the
1§ <nv¢ 5 "=

corresponding solution is of type I, that is, v = c . Forall i's, we have a;(c ) > ¢ . Letibe

an arbitrary index. From Lemma A2-6 again, we have fj(c) II Fi(¢ji(v)) dv =]
1\= le
J#i

s

(V—Bi(v)) Fi(¢;i(v)) ]U ai(c) and thus

k,w
e

© —n - (Oéqz(g)—Q)lle.j(¢.j¢(ai(£))) = Jow l—Ile(%(V)) dv.

From Lemma A2-3, we know that qﬁﬂ > g‘ , for all j, i. Consequently, we obtain (T — )

> (ai(c)—c) ﬁ Fi(¢ ;(ai(c))) + fa © H Fi(¢ ;(v)) dv. Since ¢ ; is nondecreasing
=1
%#i J#l

over

[c , T, the last inequality implies (T —n) > [° T[] F;(¢ j.(v)) dv, which contradicts the

c )

choice

of n. We thus have v > ¢ and the second part of Lemma A2-13 is proved.
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Finally, from equation (A2.15) we see that if n tends towards T , the integral f

F;(¢;'(v)) dv tends towards zero and thus v tends towardsT . ||

Proof of Theorem 3 (Section 4): Assume that F;(c ) =... =F,(c ) =0. According to
Theorem 1 (Section 2), there exists a Bayesian equilibrium of the first price auction with
mandatory bidding if and only if there exists ¢ < 7 < T, such that the maximal solution
(a1, ..., ay) of the problem (2, 19) is defined over (c , 7] and such that a(c ) = ... =
an(c) = c . Letn* be the supremum of A’ and n** be, as in the proof of Lemma A2- 12 the
infimum of Aj,. From Lemmas A2-9 and A2-13, we havec < n* < n*™ < T. From
Lemmas A2-10 and A2-12, we also have?’ A’y = (c, n*) and Ay = (™, T). Let the
closed interval [n*, n**] be denoted by A*.

Take n in A* and consider the solution (o, ..., «y,) corresponding to . Since n ¢
Ay, (o, ..., ay) is not of type 1l and is thus of type I, that is, y = ¢ . From Lemma A2-4,
we have «a;(C ), ... , a,(C) > ¢ . Moreover, n ¢ A'| and the inequalities a4 (C ), ...
,an(C ) > ¢ are thus impossible. Consequently, ay(c )= ... = au(c) = ¢, (aq, ...,
oy, ) satisfies the conditions of Theorem 1 (Section 2) and the first part of Theorem 3 is proved.

Assume next that the right-hand derivatives of Fy, ..., F, exist at ¢ , %Fl = f, ...,
(f—an = f, are bounded away from zero over [c , T |, and Fy(c ), ..., F,(c ) > 0. Extend
the density functions fi, ..., f,, for example in a piecewise linear way, to an interval [c (, T |,
with0 < ¢ < c such that they be locally bounded away from zero over (¢ o, T | and
Jofi(u)du = Fi(c), ..., [-f.(u) du = F,(c). The new functions are density functions

and they define probablllty dlstrlbutlons Hy, ..., H,over[c (T ].

From Lemma A2-12, the lower extremity v of the maximal definition interval of the
solution of (2, 19), where Hy, ..., H, have been substituted to Fy, ..., F,, is a continuous
function of n in (c, T ). From Lemma A2-13, we know that  tends towards T if 1 tends
towards T and that v is equal to ¢  if 7 is close enough to ¢ ;. From the intermediate value
theorem, there exists n* < T such that the lower extremity v * of the maximal definition
interval of the corresponding solution («j, ..., o) isequal toc > ¢ (. The solution («f, ...,
o) is of type Il for the new distributions Hy, ..., H,. However, the system (2) for the new
extended distributions H;, ..., H, coincide over (c, T] with the system for the initial
distributions Hy, ..., H,. From Lemma A2-7, we see that the conditions (4) and (5) are
fulfilled. The second part of Theorem 3 then follows from Theorem 2 (Section 2). ||

Appendix 3

Proof of Corollay 2: From Theorem 3, there exists an equilibrium (54, ..., 3,) of the first
price auction With voluntary bidding. From Theorem 2 (Section 2), there exists n such that
ar =67, .. ﬂnl form a solution of (2, 4, 5). Suppose that there exists another

equilibrium (ﬁ I -, ) which differs from (B, ..., 8,) over (c, T]. Similarly,
Y 71

~ —1
a,=p4,...,a,=p, formasolution of (2, 4, 5) for avalue?; of the parameter. From
the uniqueness (under our assumptions) of the solutions of the differential system (18) and
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thus (2) with initial conditions, we have n #7 . Without loss of generality, we can assume
that? < 7. If there exists j such that «;(c ) > ¢ , the monotonicity of the solution of (2, 19)
with respect to n (Lemma A2-8) implies that & ;(_) >c,andthus@ ;(c ) = ai(c) = ¢,

for all i #j. Consequently, there always exists j such that >  In Fy(ax(c)) = > In

k] k]

Fe(@ x(c)) = > InFg(c ). However, from (A2.1) we see that i Z In (a0 1 (b)) —
k#j

> In Fr(ar(b)) } = a(é)fb — aj(t}) , over (¢, 7 ]. From the property of monotonicity,

]
a@ j(b) > «j(b) over (c ,7 | and thus the derivative is striclty negative over this interval and
the function >  In Fy(a@ r(b)) — > In Fg(ax(b)) is striclty decreasing over [c, 7] ].

k] k]

Consequently, 0 = >  InFi(@ x(c)) — > InFr(ag(c)) > D InFe(@ (17 )) — > In
oy k£ k] W7

Fe(ar()) = 1 — > InFr(ax(7 ) and > In Fr(ai(77 )) > 1, which is impossible. We
k#j k#j

have proved that there cannot be two equilibria different over (c , T | and the equilibrium is
thus essentially unique. ||

Proof of Corollary 4: (i). From Theorem 1 and 2 (Section 2), (a; = 3%, ..., a,, = 3, 1) isa
solution over (¢ ,T ] of (2, 3) or (2, 4, 5), for the parametern = (1(T) = ... = [,(T).
From Lemma A2-3, we have ¢;;(v) < Q;l(v), for all v in (c, T ], where ¢;; = ;3 and

Gj(v) = F;l(Fj( 1))<min< Ff’;(W) ) Since Fj(w) < F;(w) and thus F;(w)/ F;(w) > 1,

m

for all win (c , T ], we have min W) — 1, for all v in (c,T]. We obtain then the
v<w<e FW

)
inequality ¢;i(v) = a;Bi(v) < ¢;'(v) = F;'(Fi(v)), forallvin (c,T]. Itsuffices then to
substitute «;(b) to v in the last inequality.

(ii). From Theorems 1 and 2 (Section 2), (a; = B}, ..., a,, = 8, 1) is a solution over

(c,T]of (2 3)or(2,4,5), for the parametern = /,(T) = ... = [£,(C). From Lemma

A3-3, we have ¢ji(v) > sz‘(V), for all v in (Wjiv T ], where Qﬁﬂ = Oéjﬁi, Cji(v> = F]‘l (FZ(V)

Fi(w) (W FEwW) o _ E. i JE

, <r{10|n< ) ) and wj; is such that F;(w;;) i <m1|]51< Fw — Fj(c). Since Fi/F;is

nonincreasing over (¢ , T ], F;/F; is nondecreasing over (¢ , T | and thus _min__ EZ(W) =
v<w<e FWw

Ff(:l’g forall vin[c ,T]. Consequently, w; =c and (;(v) = v, forallv in c,T].

(ii). 1f we compute the derivative in (f—v Fi;/F; (v) < 0, we obtain the inequality
fi(v)/Fi(v) < f;j(v)/F;(v),forall vin (c ,T]. Fromequation (A2.8), we see that, for all v in
(c, T] such that ¢;(v) = v, we have %qsﬂ(v) = (i(V)IF(v)) (Fj(v)If;(v)).
Consequently, for such v, dvgbﬂ(v) < 1. Furthermore, we know that ¢;(T ) = T. We can
thus apply Lemma A5-1toa = ¢, b = T, I(v) = ¢;(v)and h(v) = v, forall vin (c,

T | and we obtain ¢;;(v) > v, forall vin (c ,T ). Consequently, 8;(v) > 3;(v), forall vin
(c,T ), and (iii) is proved.

(iv). Itis an immediate consequence from (i) or (ii).
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(v). It follows?? from Riley and Samuelson (1981) and the observation that from (iv)
we have 3; = (;,over (c ,T |, foralll < i,j < n. |

Proof of Corollary 5: When m = n, Theorem 4 is an immediate consequence of Corollary 4
(V) (Section 4). We can thus assume thatm < n. Let («ay, ..., «,) be a maximal solution of
(2,19) and (v, n] its definition interval, withc <~ <7 <T. Lemma A2-5 implies that the
functions 3, = ay'and ¢;1 = @flﬂl = ajo;', 1 <j<nandj+# 1, form a solution over
the interval (a;(c ) =a'1(c ), T] of the system (A2.8, A2.9) of differential equations

considered on the domain D; = {(v, (6j1)jz1, 1) | € <V<T, C <y <T, B < ¢j,

for all 1 <j<n such that j # 1, and (;_129(1”(;)2) + ZZ g >0 } with initial
141

conditions 51(T) = nand ¢;;(C) = T, forall j # 1. Here, it is possible to simplify

somewhat the differential system (A2.8, A2.9). From Lemma A2.3, there exist ;' and a'

suchthat o; = o'y, foralll < i < m,and«; = a's, forallm < i < n. By substituting

B1=a7't08,G toF, g tof, G toFj, gotof;and @2y = o'yta’y to ¢y, for j such that

m < j < n,and by rearranging and simplifying we obtain

d o —_ 9i(v) Ga¢u(v) m@'a1 (V) — (M—1)v — §'1(V)
(A31) 792 (V) = GN) G Tmv- (-Den®) - 7 *

d o _ 0v) (=1 (v=F'1(v)) (921 (V)=B1(V))
(A32) 01(V) = G  Tomy = (em-Deu (v = W)

Consequently, from Lemma A2-5 ', and ¢'s; form a solution over (a;(y ) = «'1(y ), T | of

(A3.1, A3.2) considered in the domain D', = {(v, ¢, 01) | € <v<T, C <¢'9<T,

! 1 —1)(n—m-1 _ R .
31 < ¢’y and Vl(g.](”J) ) 4 g > 0 } with initial conditions (A3.3) below

(A3.3)31(C) = nand¢'»(C) =T.

We see that we can consider the system (A3.1, A3.2) over the domain D"y = { (v, ¢,
B1) e < v,¢ulv) <Tand(n—m)v > (n—m—1)¢'xn(v) + B1(v) }. Through the
change of variables (p, x'a1, p'1) = (G1(Vv), Ga(¢'21(G7Y)), B1(G;1)), the system (A3.1,
A3.2) in D" is equivalent to the system (A3.4, A3.5) below in the domain D"; = { (p, x'21,
p) [ 0 < px2(p) < land(n—m)Gii(p) > (n—m—1)Gy (x21(p) + p1(p) },

d. _ Xa(p) mG, ' (x'21(p)) — (M=1)G; '(p) — p'1(P)
(R34 xaP) = 57 Fmdip - (om 06 0k®) - )

Ao 1 (DG () )G () (p)
(A3.5) 5P1P) = 5 -mG.1(p) — (n-m-1)G; [ (b)) — pa(D)°

Under our assumptions, the system (A3.1, A3.2) satisfies the standard requirements from the
theory of ordinary differential equations.
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Let (51, ..., B,) be a Bayesian equilibrium. From Corollary 3 (Section 4), we can
assume that (5, ..., (,) is a Bayesian equilibrium of the first price auction with mandatory
bidding and thus (see Theorem 1, Section 2) that 8;(c ) = ... = f,(c) = c. From
Corollary 4 (iv) (Section 4, or Lemma A2-3), there exist 5'; and 3’5 such that 3, = ', for
alll < i < myand 5, = (%, forallm < i < n, over (c,T]. Moreover, from the
previous paragraph there exists ¢ < n < T such that 8 and ¢'y; = 8513 form a
solution over (a'i(c ), n] = (c , n] of the differential system (A3.1, A3.2) considered in the
domain D"; with initial conditions (A3.3). From Corollary 4 (iii) (Section 4), we see that
B'1(v) > ['2(v) and thus ¢'5;(v) > v, forallvin(c ,T).

~Y

Suppose that there exists another equmbrlum (ﬁ 1 L0 ) Proceeding as above, we
see that there exist 3 '; and 3 ' such thatﬁ 1= ... = =510 gl = oo = B,

m
~Y

= AB o and there exists 77 such that 6 1 and ?;5 ' =0" 1ﬁ 1 form a solution of the
differential system (A3.1, A3.2) considered in the domain D"; with initial conditions (A3.3)

for the parameter % . Moreover, we can assume that /3 W(c) = B ''(c) =c and thus

25 '91(c ) = €. From the uniqueness of the solution of the differential system (A3.4, A3.5)
and thus of the system (A3.1, A3.2) with initial conditions, we have 7 # n. Without loss of

generality, assume that % < n. From Lemma A2-8, 3 1(v) < S1(v), forallvin (c ,T .
We can rewrite equation (A3.4) as dld—nplnx'm(p) =

MG, ' (x'21(P)) — (M=1)G; *(p) — p'1(p) i - i
o= m)é o) (nfmfl)GQ_f(X.m(p))7p.](p), for all p |n2(0, 1]. From this equation, we see that
dlnpIn>< 21(p) is differentiable at 1 and thus that d(%p)anX'Ql(l) exists. By taking the derivative
of this equation and substituting its value (n —1)(T — n), from (A3.5), to %p'l(l), 1 to

Lx'21(1), and n to p'y (1), we find

(A3.6) grismIny'ar(1) = (HEEL S

From (21) atv = T, we know that g;(CT ) — g2(CT ) < 0. Equation (A3.6) then implies that
ﬁlnx'gl(l) is a strictly decreasing of n. Since > 7, we have ﬁlnx'm(l) <
ﬁln;}'gl(l), where Y91 = Gg(aﬁ'gl(Gl‘l)). Sinceg'm(*c) = ¢'»(C) = T and, from
equation (A3.4), d,"—npln>~<'21(1) = cﬁj—npmx'm(l) = 1, this inequality implies the existence of
e > 0suchthat ¢ 91 (v) > ¢'91(v), forallvin (T —¢,T).

Equation (A3.1) can also be rewritten as

d — 9(v) Ga(du(v) (n—m) (¢'n(v) — V)
Gon(v) = & et {14 oopliea ) o
forall vin (c,T]. We then see that if ¢'»1(v) > v, the derivative Lg% (v) is a strictly

increasing function of 3 (v). Because J '1(v) < (V) over (c,T ], we have ¢ (v) >
O?—V&' '51(v), forall vin (c ,T | such that @ 91 (V) = ¢'91(V). The assumptions of Lemma A5-1
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are satisfied for h = ¢'91, | = 5 “i,a = Cc andb = T —¢/2. From this lemma, we
obtain ¢ ‘51 (v) > ¢'xn(v), forallvin(c ,T —e¢/2] andthusforallvin(c ,T).

From Lemma A2-6, we have L { (v—g35(v)) GI'(¢'a(v)) GV ™" V(v) } =

GI'(¢'12(v)) Gy ™V (v) over (c , T ]. Since Ba(c) = ¢, B5(C) = nand ¢'u(c) = T,
we obtain

[5G (o) Gy " vy dv =T — .

Similarly, we have ff G (¢ 'u(v)) G (v) dv = T — % . From the previous
paragraph, we know that ¢'s; (V) < @ "21(V), forall vin (c ,T ), and thus ¢'12(V) = ¢'5(V)
> ¢ a(v) = ¢ 5i(v), forallvin (c,T ), and

[5G (6(v) Gy vy dv > 7GRS a(v) Gy (v) dv.

This inequality and the two previous equalities imply© — n > T — 7 . This contradicts
our initial assumption?; < n and Corollary 5 is proved. ||

Proof of Corollary 6: Without loss of generality, we can assume that m = 1. Assume first
that contrary to the hypothesis, Gi(c ) = Go(c ) = 0. We will later relax this assumption.
Letc < n < T be such that the corresponding solution (ag, ..., a,) of (2, 19) is of type II,
that is, such that v >c . We prove that a;(y) = ... = a,(y) = 7. From Lemma A2-
3,a; = ap, forallm < i < n. Suppose that there exists i such that o;(y ) # . From
Lemma A2-7, there cannot be more than one such i. We can thus assume that i = 1.
Consequently, a1(y ) > v and aa(y ) = . From the first part of the proof of Theorem 4,
p1=0F31(GrY) and xa1 = Ga(d1(Gyl)) = Ga(azfi(Grl)) form a solution over
(Gi(aa1(v)), 1] of (A3.4, A3.5) considered in the domain D"y = { (p, x"21, p'1) | G1(€) <
p, X21(p) < land (n—1)Gyl(p) > (n—2)Gy (x'21(p)) + p1(p) } (we substituted its
value to m) with initial conditions (A3.3). Since (n—1) ay(y) > (N —2) ¢ai(aa(v)) +
Bilen(y)) = (n—1) v, we see that (Gi(ai(y)), Ga(¢u(ar(v))), Bilaa(n))) =
(Gi(a1(v)), G2((7)), v ) lies in this domain D";.

Since m = 1, the system (A3.4, A3.5) reduces to

d. _ X G, (le(p))*ﬂl(p)
X2 (P) = 5 e - (26, T 7)) 7

4oy = L =DEIEp )G (b)) (p)
dppl p (n—l)Gfl(p) (n Z)G (X21(p))—p'1(p) .

Notice that (X 5,7 1), where X 5, is equal to the constant function Gy(vy ) andp’ , is equal to
the constant function v, is a solution over (G;(a1(y )), 1] of this system considered in the
domain D";. The solutions (x21, p1) and (X 5, 7 1) coincide at Gi(a; (7)) and from the

uniqueness (under our assumptions) of the solution of this differential system with initial
conditions, they must coincide everywhere. However, this is impossible since x-1(1) =
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Ga(¢21(T)) = Gao(T) = land’¥ 5;(1) = = Gao(y) < 1. We have thus proved that for

every type Il solution (s, ..., a,,) of (2, 19), we have ai(y ) = ... = au(y) = 7.

Suppose now that the right-hand derivatives of G; and G, exist at ¢ , f—\,G1 = ¢; and
dd—VGQ = (@, are bounded away from zero over [c, T ], and Gi(c ), Go(c ) > 0. The
existence of an equilibrium of the first price auction with mandatory bidding is then proved by
extending the density functions g;, g> as we did in the proof of Theorem 3 (statement in
Section 4, proof in Appendix 2) to an interval [c o, T], with0 < ¢, < c, such that the
distributions they determine are atomless, applying the continuity of v with respect to » and
the property of type Il solutions we proved in the previous paragraph. ||

Appendix 4

As explained in Section 2, a strategy of bidder i specifies his bidding plans for every
possible valuation. As suggested in footnote 7, OUT is supposed to be a real number stricly
smaller than ¢ . We formally define a strategy 3; of bidder i as a function from the Cartesian
product of the set of possible valuations [c , T | with the family B(A) of the Borel subsets of
the set of admissible actions A = {OUT}U[c, 4+ o) or [c, + oo) to the interval [0, 1],
that is,

Gi: [c,T] x B(A) — [0, 1]
(v, B) — [i(v, B),

such that g;(v, .) is a probability measure over A, for all v in [c, T], and G;(.,, B) is a
measurable function (for the o-algebras of the Borel subsets), for all B in B(A). The topology
over {OUT}U[c, +o0)and [c, + oo) is the topology of the Euclidien distance. For v in
[c, T], the probability measure 3;(v, .) should be interpreted as the bid probability
distribution bidder i uses if his valuation is equal to v and if he follows the strategy (.

A strategy 3; of bidder i and the valuation probability distribution F; determine a
probability measure g3;xF; over the product [c ,T] x A of the set of possible valuations [c ,
T | with the set of allowable actions A. The probability measure j3;*F; is defined as follows,

for all Borel subset V of [c , T | and all Borel subset B of A.

Appendix 5.
Lemma A5-1: Let h and | be two functions continuous over [a, b] and differentiable over (a, b]
witha < b. IfI(b) > h(b) and £h(x) > ZI(x) for all those x in (a, b] such that I(x) =
h(x), then

[(x) > h(x),
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forall xin (a, b] and I(a) > h(a).

Proof: Without loss of generality, we can assume that h(x) = 0, for all x in [a, b]. We can
also assume that I(b) > 0. Otherwise we would have I(b) = 0and L1(b) < 0 and thus
[(x) > 0 in a neighborhood of b and we would have to consider a smaller interval with a
different upper extremity. Suppose that the set {x € (a, b] | 1(x) < 0} is not empty and let
y be defined as the supremum of this set, that is,y = sup {x € (a, b] | I(x) < 0}. From
the continuity of I, we have I(y) = 0,y = max {x € (a,b] | I(xX) < O}andalsoy =
min {x € (a, b] | I(z) > O, forall zin (x, b]}. By assumption, we have %I(y) < 0. For
z>y, we have I(z) = ZI(y) (z—y) + o(|z—y]|) (z—y) and thus I(z) is strictly
negative for z close enough to y. This conclusion contradicts the definition of y and Lemma
A5-1 is proved. ||

Footnotes.

1. I thank Mamoru Kaneko for discussions on an earlier draft. Comments by Ming
Huang and by referees are gratefully acknowledged. A two part draft of this paper circulated
under the titles: “First Price Auction: the Asymmetric Case with N Bidders™" and “First Price
Auction: Properties of the Equilibria in the Asymmetric N Bidder Case."

2. Throughout our paper, an absolutely continuous measure means a measure
absolutely continuous with respect to the Lebesgue measure.

3. In the frameworks of Lebrun (1996) and this present paper, it is easily seen that an
equilibrium of the first price auction with mandatory bidding is an equilibrium of the auction
with voluntary bidding. However, the reverse is not generally true. For a counterexample, see
the introduction of Lebrun (1996).

4. For example, when the measures are atomless the authors use but do not prove the
alleged differentiability of the bid functions at the lower extremity of the support. When a
measure has a mass point at this lower extremity, the existence result in Maskin and Riley
(December 1994) does not apply. The endpoint conditions are not precisely specified nor
fully proved.

5. Corollary 4 (v) (Section 4) gives other existence results (see footnote 17).
6. The support of a probability measure . is the largest closed set of p-measure one.

7. This last assumption is satisfied if, for example, fy, fy, ..., f, are striclty positive
and continuous over (¢ ,T ].

8. Although this assumption is convenient, it is necessary.
9. For example, OUT can be any real number stricly smaller than c .

10. Remark that, from our definition of a strategy (see Appendix 4), if a strategy is
pure then the bid function is measurable. In fact, if B is a Borel subset of [c, + co) or
{OUT}U[c, + oo) and if Bis pure, 371(B) = (3(., B))~! ({1}) and is thus a Borel subset
of[c,T].
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11. From Corollary 4 (i) in Section 4, we can show that if F,,(x) < F;(x), forall i and
X, only bidder n can have such a bid function and only when F;(c ) > 0, for all i # n, and,
form Corollary 4 (iv) (Section 4) and Corollary 6 (Section 5), no other bidder has the same
valuation distribution as bidder n, that is, F,, # F;, for all i # n.

12. When bidding is voluntary, b =c and i = j as in (4), we use the fact that, if a
function f is continuous over an interval [a, b] and is differentiable over the interval (a, b) and
if the limit of the derivative of f at x for x 2 b exists, then the function f is differentiable on

the left at b and the left-hand derivative at b is equal to the limit of the derivatives.

13. Bidder i does not necessarily bid everywhere in this interval. That is, the support
of 5;(v, .) may be a proper subset of the interval [b;(Vv), b;,(v)] when his valuation is equal to

14. The graphs of the functions b; may cross each other. In our diagrams we
represented simple cases where they do not.

15. In the case of the closed interval [c , T ], being locally bounded away from zero is
equivalent to being “uniformly™ bounded away from zero.

16. Remark that from Lemma A2-11 we are able to obtain the following bounds of n*

dn™, T — F dv <y <" <T - i
and ¢~ mec [0 TR @) <0 < < e o min 0]

J?él ]762
Fj(£ jl.(V)) dv,

where g‘ is defined in Lemma A2-13 from ¢;; which in turn is defined in (A2.4) and (A2.5)
in Appendlx 2. Notice that when Fi(c ) =... =F,(c ) =0, we have Qﬁ. = (j;, for all
1<i,j<n.

17. Remark that Corollary 4 (v) extends our existence results to the symmetric case
with mandatory bidding where there is a mass point at ¢ . Actually the existence of an
equilibrium in this case follows from more general results. In order to obtain the existence of
an equilibrium of the first price auction with mandatory bidding, it suffices to add to the
assumptions of Theorem 3 concerning the case with simultaneous mass points at ¢ the
requirement that there be two identical distribution functions which stochastically dominate
the others. We can instead require that for every bidder there exists another one with the same
valuation probability distribution. The proofs are simple and rely on the property of the type
Il solutions that at most one function «; can be such that «;(c ) > ¢ (Lemma A2-7). See also
Corollary 6. Remark also that in Corollary 4, we do not require that the density function be
locally bounded away from zero atc .

18. As it is the case of the system (2), this system is equivalent to a system which
satisfies the standard requirements of the theory of ordinary differential equations, for intial
conditions in the domain.

19. Such ¢ and 6 exist since the L.HS. of 7¢ SBERL(bY)

2[8;+Fl2([c, b])
[ﬂj*m?([fﬂ’jgéi}t([é{*%b({b})/ 2 - & tends towards n 72[[51:E ]] ([{Cb}g] as ¢ tends towards zero.
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20. Actually P(j | oj(b), b') = (a(b) —b") Fi(a;(b")) [T Fr(cu (b)) whenb' > c .
k74,
Itisthe case b' = ¢ andi = jasin Lemma Al-14 which requires us to consider the limitb
2 b'.
21. We have actually proved also the continuity of a;(c ) with respect to 7.
22. Ay = (¢, n™].

23. Here, one way to prove (v) directly is as follows. We know that ¢;(v) =
B7'6i(v) = v, forallvin(c,T]andalll < i, j < n. Let 3 denote the continuous
function over [c ,T | suchthat 5 = (;, forall1 < i < n. From (3) in Theorem 1 (Section
2) or (4) in Theorem 2 (Section 2), we have 3(c ) =c . From Lemma A2-6, we obtain dd—v
(v—p3(v)) F*'I(v) } = F*I(v), forallvin (c,T]. By integrating the equation above
fromc tov, forvin [c, T ], by using the equality c = ((c ) and by solving for 5(v), we
obtain the expression in (v). The way to see that the formula and the conditions in (v) give
Bayesian equilibria is by noticing that the functions ¢y;, k # i, with ¢;(v) = v, for all v in
[c ,T ], and 5, = @ form a solution over (c , T | of (A3.8, A3.9) in D;. Moreover, the value of
the continuous extension of 3 at ¢ isc since [ F"~!(w) dw/F"'(v) < (v—c). It
suffices then to apply Lemma A2-5 and Theorems 1 and 2.
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ADDENDUM

In the proof of Lemma A2-12, we showed that lim o/ (~') = ~, for all i such that

Ul
a; () = ~, and we stated that this property implies the continuity from the left of the lower
extremity of the interval of the maximal solution with respect to n. Here, we prove this
statement.

We first show that there exists 7' < » such that the corresponding maximal solution is
of type Il that is, is such that o/ > ¢. Suppose, on the contrary, that o/ = ¢, forall o < 7. Let
b be an arbitrary bid in (, 7). By monotonicity, we have

aj(c) = aj(af) < ai(b') < aj(b)

forall b"in [¢,~]. Relying, as previously in the proof, on the continuity of the solution of the
differential system with respect to the initial conditions, we have lim o/ (b) = «a;(b) and
=

consequently we find

v =lim o} (7/) < liminfo;(b") < limsup aj(b’) < lim aj(b) = a;(b)
77’—><77 — 17’?7] n/?n 7]'—><7]

By making b tend towards ~ we then find that lim o/ (") exists and is equal to ~, for all b’ in
— ,,7/‘;,,7 —
[c,7].

Let b be an arbitrary element of (g, 1). Let € be a strictly positive number strictly
smaller than (y — b) /2 and let 6 > 0 be such that a}(y — 2¢) > v — ¢, for all 7/’ such that
n—6 <n <mn. From equation (A2.1), we have

%In{]};['Fk(a;(b))(l - b)} = 0 ﬁ forall b in (c,~), and thus, by integrating
from b to v — 2¢, we have

TT7x (04 (v — 2€))2¢ = [[Fr(cd(2)) (v - b) = /z_ 6{0/.(5 b yib}db'

ki ki b

m - ﬁ‘ < 1+ 1 and we can thus apply the

i

Over the integration interval we have

Lebesgue dominated convergence theorem. We find

lim {HFk(ak(Z —2¢€))2e — [T Fr(o} (b)) (v — Q)} = 0. Since
ki

7]’—><7] ki
0< HFk(a;C(Q))(z—Q) < 2¢ + {HFk(az(b))(’y — Q) — HFk(Oéz(j— 26))26}, we

ki ki T ki
obtain
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0< I|m|anFk (0 (1)) (v —1) < IlmsupHFk (0 (b)) (v —b) < 2e.
T2 ki B 2N i B

Since these inequalities hold true for all ¢ > 0, we find lim [ F} (. (b)) (v—1b) =0.

I] — I] k’?él
However, this is impossible since [T £y (a}, (b)) (y — b) > [1Fu(b) (v — b), for all ' < n, and
i - i -

[TFx(b)(y — b) is strictly positive. We have thus proved that there existsﬁ/ < m such that
ki -
i' > ¢. By monotonicity of the solution of the differential system with initial condition with

respect to n, this is the case for all values of the parameter in (5/, 17).

We show in the proof of Corollary 6 in Appendix 3 (see the paragraph preceding the
statement of Corollary 6 in Section 5) that when all distributions except at most one are
identical then 1 (7) = ... = a () = v, for all type Il solutions. Thus, when n = 2 we have
a;(y) =, foralli,and o (') =+, forall iand all 7/ in (5’,77), since then v/ > ¢. Take
any i =1,2. Then lim o/ (7) = 7 immediately implies  lim 7' = 1. Assume n > 2. From

77—’< - m=n

Lemma A2-7, «; (1) = ~ for at least (n — 1) values of the index i. From the same lemma, for
all 7/ in (5/, 17) there exist at least (n — 1) values of i such that o (y') = /. Since

2(n—1) > n, forall 7' in (77', "7) there exists at least one such common value of i, that is,

there exists i such that «; (y) = yand (') = +/. Take a sequence (7;,),~, in (7/, 77) such

that 17, — nas k — + oo and let (i), be the sequence of corresponding index values.
Since there is only a finite number (n) of possible values for i, there exists at least one value i
that is repeated infinitely in the sequence (i), By considering the corresponding

subsequence of (n},),.;, We can thus assume that ;" (l’k) = +'*, where ;" and +* are the i-

th component and the extremity of the maximal definition interval of the solution of the
differential system with initial condition for the value 7). of the parameter, for all £ > 1. From
lim o (’y) = 7, we then have lim fy’k = 7. The monotonicity of v with respect to  (Lemma

7] ~>< k—-+o0 —

A2-9) then implies lim +" = .

T]—> T]
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