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Abstract

We deviate from the symmetric case of the independent private value

model by allowing the bidders’ value distributions, which depend on pa-

rameters, to be slightly different. We show that previous results about

the equality to the first-order in the parameters between revenues from the

second-price auction and other auction mechanisms follow from the joint dif-

ferentiability of the equilibria with respect to the parameters. We prove this

differentiability for the first-price auction and obtain general formulas for the

different first-order effects. From our results about the first-price auction,

we analytically generate examples with continuous distributions where a sto-

chastic improvement to a bidder’s value distribution reduces his equilibrium

payoff. In another application, we show that, starting from competition

among cartels of equal sizes, allowing in a small number of members from

other cartels can be profitable only if the members or the synergies between

them are strong enough.
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1. Introduction

Starting from the standard independent private value model with ho-

mogeneous bidders, Fibich, Gavious, and Sela (2004) consider a particular

asymmetric perturbation of the valuation distributions. They show heuris-

tically that the revenues from the second-price auction and from some other

auctions, if equal with homogeneous bidders, are equal to the first-order in

the size of their asymmetric perturbation. By increasing the dimensionality

of the parameters that determine the perturbations, we show that Fibich et

al. (2004)’s result is an immediate consequence of the joint differentiability

with respect to these asymmetry parameters. We then go on to prove this

differentiability for the first-price auction and for general asymmetric pertur-

bations of the valuation distributions1. Formulas for the first-order effects on

all equilibrium functions and quantities of interest can then be easily derived

and extend the expressions Fibich and Gavious (2003) compute.

We next show two applications, pertaining to the first-price auction, of

our results. In the first application, we analitically generate, from our explicit

formulas for the first-order effects, a class of examples where the stronger a

bidder is, the smaller his exante payoff becomes. Arozamena and Cantil-

lon (2004) check numerically that an example they construct satisfies this

property. The existence of continuous examples with this property already

followed from the discrete examples Thomas (1997) found analytically and

the continuity of the equilibrium with respect to the value distributions (see

Lebrun 2002).

In the second application, we consider the formation of coalitions. We

show that, starting from competing homogeneous cartels, allowing a small

number of transfers from other cartels is profitable to a cartel only if the

bidders or the synergies between them are strong enough. A result from

1Contrary to what Fibich et al. (2004) write in their footnote 4, Lebrun (1996, 1999)
does not prove the differentiability with respect to the parameters.
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Waehrer (1999) that compares the players’ expected payoffs within the same

equilibrium, combined with our differentiability result, implies that letting

in a small number of weak bidders cannot increase the average payoff in the

absence of significant synergies. Our explicit formulas show that the average

payoff actually decreases in this case.

2. First-Order Revenue Equivalence

Consider the standard independent private value model with n risk-neutral

bidders whose values are distributed over the same interval [c, d]. The value

distributions F1, ..., Fn depend on nm parameters τ 11, ..., τ
1
m; ...; τ

n
1 , ..., τ

n
m in

(−ρ, ρ) through the function F (.; .) as follows:

Fi (.) = F
¡
.; τ i1, ..., τ

i
m

¢
,(1)

where m is a strictly positive integer, ρ > 0, and (τ i1, ..., τ
i
m) is the vector

τ i of parameters specific to bidder i, for all 1 ≤ i ≤ n. Throughout the

paper, F (.; τ i1, ..., τ
i
m) is a continuous-from-the-right cumulative distribution

function with support [c, d] and such that its restriction to [c, d] is absolutely

continuous, for all values of the parameters τ i1, ..., τ
i
m.
2

Let RS (τ 1, ..., τn) be the auctioneer’s expected revenues from the equi-

librium in weakly dominant strategy—the sincere-bidding equilibrium—of the

second-price auction when bidder i’s vector of parameters is τ i, for all i.

In this case, we also denote RM (τ 1, ..., τn) the expected revenues from an

incentive compatible and individually rational direct mechanism M . The

following proposition is an simple mathematical exercise. In its statement as

in the rest of the paper, a bold character denotes a nm-dimensional vector.

2While in the main text we will assume F
¡
.; τ i1, ..., τ

i
m

¢
to be atomless, in the appendices

we will sometimes allow a mass point at c.
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Proposition 1: Assume RM is symmetric, that is, RM (τ 1, ..., τn) =

R
¡
τπ(1), ..., τπ(n)

¢
, for all permutation π of {1, 2, ..., n}. Assume further that

the revenues RM and RS coincide when the values are distributed identically,

that is, RM (τ , ..., τ ) = RS (τ , ..., τ), for all τ in (−ρ, ρ)m. Then, if RM and

RS are differentiable at 0, where 0 is the null nm-dimensional vector, whose

all components are equal to 0, we have (i) and (ii) below:

(i) The difference between RM (τ ) and RS (0) is of the first-order in the

parameters, that is:

RM (τ ) = RS (0) + o (|τ |) ;
(ii) For δ =

¡
δ1, ..., δn

¢ ∈ Rnm different from the null vector, the deriva-

tive of RM at 0 in the direction δ is equal to the derivative of RS at 0 in

the direction
¡Pn

i=1 δ
i/n, ...,

Pn
i=1 δ

i/n
¢
.

Proof: See Appendix 1.

If the direct mechanism M is constructed from equilibrium strategies of

some auction procedure, the revenue function RM is symmetric when the

auction’s rules are anonymous and the equilibrium unique for all n-tuples of

distributions (F (.; τ 1) , ..., F (.; τn)) with (τ 1, ..., τn) in (−ρ, ρ)nm. From the
Revenue Equivalence Theorem (see Myerson, 1981), the functions RM and

RS coincide for identical value distributions if, in those cases, M allocates

the item to the highest value bidder and leaves no payoff to any bidder with

value c.3

To illustrate Proposition 1 and its proof, consider the case with two bid-

ders and one-dimensional parameters, that is, n = 2 and m = 1. By

3In Sections 2 to 4 of Fibich et al (2004), no surplus for any bidder with the lowest
possible value is explicitly required in Condition 4 (Section 2). Contrary to what seems
to be assumed, their Condition 3—that the highest bidder win—does not imply efficiency in
the symmetric case, nor anonymity (as simple examples with discriminatory payment rules
show). Anonymity is explicitly required though in Section 5 (Condition 3B). Uniqueness,
which allows to properly define the revenue function, seems to be implicitly required in
Sections 2 to 4.
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assumption, the mechanism M and the second-price auction give the same

revenues when both bidders’ values are distributed according to F (.; τ), that

is, when the couple of parameters (τ 1, τ 2) is equal to (τ , τ) and hence belongs

to the diagonal D (see Figure 1). Consequently, the derivatives of RM and

RS at (0, 0) in the direction (1, 1) along this diagonal are identical.

FIGURE 1

The derivative of RS at (0, 0) in the direction (1,−1) is equal to zero.
If it was strictly positive, for example, there would exist a small λ > 0

such that RS (λ,−λ) would be strictly larger than RS (−λ, λ). However,

this is impossible since the revenues from the second-price auction when the

couple of value distributions is (F (.;λ) , F (.;−λ)) are the same as when the
distribution couple is (F (.;−λ) , F (.;λ)), for all λ. Only the labeling of the
bidders differs, with no effect on the total revenues.

The assumed symmetry of RM implies similarly that the derivative of

RM in the direction (1,−1) is equal to zero. Consequently, all direc-

tional derivatives for RM and RS are identical. Moreover, the difference

between RM (τ 1, τ 2) and RS (τ 1, τ 2) vanishes at (τ 1, τ 2) = (0, 0). Thus,

from the assumption of differentiability, this difference is equal to zero to

the first-order in the distance between (τ 1, τ 2) and (0, 0), that is, the ratio
|RM(τ1,τ2)−RS(τ1,τ2)|

|(τ1,τ2)| tends towards zero as the length |(τ 1, τ 2)| of the vector
(τ 1, τ 2) tends towards zero. Proposition 1 (i) follows.

Since the derivative of RM in the direction orthogonal to D vanishes,

its derivative along any direction
¡
δ1, δ2

¢
is equal to its derivative along the

orthogonal projection δ1+δ2

2
(1, 1) onto D. Proposition 1 (ii) follows and

RM
¡
εδ1, εδ2

¢
= RS (0, 0) + ε

δ1 + δ2
2

µ
d

dτ
RS (τ , τ)

¶
τ=0

+ o (ε) .

In the next section, we show conditions under which Proposition 1 may

be applied to the case where M is the equilibrium of the first-price auction

and prove that the examples below can be made to satisfy these conditions.
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Example 1: Consider Fibich et al (2004)’s asymmetric perturbations:

Fi (.) = F (.) + εHi (.) , (2)

where F is an absolutely continuous cumulative distribution function4. Their

results follow from Proposition 1 if we consider rather the following multidi-

mensional perturbations:

F
¡
.; τ i1, ..., τ

i
n

¢
= F (.) +

nX
k=1

τ ikHk (.) , (3)

with (τ i1, ..., τ
i
n) ∈ (−ρ, ρ)n, Hk is continuous and such thatHk (c) = Hk (d) =

0, for all 1 ≤ k ≤ n, and d
dv
F − ρ

Pm
k=1

¯̄
d
dv
Hk

¯̄
exists and is strictly positive

over (c, d]. The departure (2) from the symmetric model is then the par-

ticular case of (3) where (τ i1, ..., τ
i
n) = ε

¡
δi1, ..., δ

i
n

¢
, with δij = 0 if j 6= i and

δii = 1 (here, in the notation of Proposition 1, m = n).

From Proposition 1 (ii), assuming differentiability, the derivative of RM

at the origin 0 of the parameter space in the direction
¡
δ1, ..., δn

¢
is the

derivative of RS in the direction
¡Pn

i=1 δ
i/n, ...,

Pn
i=1 δ

i/n
¢
= (e, ..., e) /n ,

where e is the n-dimensional vector with all its components equal to 1.

When the vector of parameters is ε/n (e, ..., e), every distribution function

Fi in (3) isG (.; ε) = F (.)+ε
Pn

k=1Hk (.) /n, whose derivative with respect to

ε is equal to
Pn

k=1Hk (.) /n. From the formula d−
R d
c

©
nG (.; ε)n−1 − (n− 1)G (.; ε)nª dv

for the revenues from the second-price auction in the symmetric case, the

derivative with respect to ε at ε = 0 gives5 the following value for the direc-

4Fibich et al (2004) actually assume that F is continuously differentiable, and that
|Hi| ≤ 1 and Hi (c) = Hi (d) = 0, for all 1 ≤ i ≤ n. Obviously, we must, as we do below,
add conditions to make sure that F1, ..., Fn are probability distributions.

5In Section 3, we return to Example 1 and show (by appealing to Proposition 2, Section
3) that we may differentiate under the integral sign.
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tional derivative of RM :

− (n− 1)
Z d

c

F (v)n−2 (1− F (v))

Ã
nX

k=1

Hk (v)

!
dv,

the first-order effect found by Fibich et al (2004).

Example 2: In Section 4 especially, we will use the following departures
from the symmetric setting with absolutely continuous distribution function

F :

F
¡
.; τ i1, ..., τ

i
m

¢
= F (.) .

mY
k=1

Hk (.)
τ ik , (4)

where (τ i1, ..., τ
i
m) ∈ (−ρ, ρ)m, Hk is strictly positive and bounded over (c, d],

and such that Hk (d) = 1, for all 1 ≤ k ≤ m, and d
dv
lnF − ρ

Pm
i=1

¯̄
d
dv
lnHi

¯̄
exists and is strictly positive over (c, d]. When m = n, the derivative of the

total revenues in the same direction
¡
δ1, ..., δn

¢
as in Example 1 above, which

gives the first-order effect of the deviation Fi = FHε
i , is

6:

− (n− 1)
Z d

c

F (v)n−1 (1− F (v))

Ã
nX

k=1

lnHk (v)

!
dv.

3. The Second-Price and the First-Price Auctions

From the simplicity of the sincere-bidding equilibrium of the second-price

auction, conditions under which RS is differentiable are easily obtained. We

have Proposition 2 below.

Proposition 2: Assume there exists 0 < ρ0 < ρ such that the distribu-

tion function (1) is absolutely continuous in v everywhere and continuously

6In Section 3, we also return to Example 2 and prove (from Proposition 2, Section 3)
that differentiation may be taken under the integral sign.
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differentiable with respect to τ in (−ρ0, ρ0)m and its partial derivatives with

respect to τ 1, ..., τm are bounded over (c, d)×(−ρ0, ρ0)m. Then, RS is contin-

uously differentiable over (−ρ0, ρ0)m and differentiation may be taken under

the integral signs in the equality below (obtained through integration by parts):

RS
¡
τ 1, ..., τn

¢
= d+ (n− 1)

Z d

c

nY
j=1

F
¡
v; τ j

¢
dv −

nX
h=1

Z d

c

nY
j=1
j 6=h

F
¡
v; τ j

¢
dv.

Proof : For all 1 ≤ i ≤ n and 1 ≤ k ≤ m, since ∂
∂τk

F (v; τ) and F (v; τ)

are bounded, when we differentiate the equality above with respect to τ ik,

we may differentiate under the integral signs (for example, from Lebesgue

theorem of dominated convergence), and we find:

∂

∂τ ik
RS
¡
τ 1, ..., τn

¢
= (n− 1)

Z d

c

µ
∂

∂τk
F
¡
v; τ i

¢¶ nY
j=1
j 6=i

F
¡
v; τ j

¢
dv

−
nX

h=1
h6=i

Z d

c

µ
∂

∂τk
F
¡
v; τ i

¢¶ nY
j=1
j 6=h,i

F
¡
v; τ j

¢
dv.

Again because ∂
∂τk

F (v; τ) and F (v; τ) are bounded, the equality above im-

plies that ∂
∂τ ik

RS (τ 1, ..., τn) is continuous. Proposition 2 follows. ||

From the previous section, if the equilibrium of the first-price auction is

unique and differentiable with respect to the perturbation parameters, the

equality to the first-order between the revenues from the first and second-

price auctions immediately follows from the Revenue-Equivalence Theorem.

From Lebrun (1999), under Assumption E below, any equilibrium is pure

and satisfies a system of differential equations, obtained from the first-order

conditions, with partially determined boundary conditions. From Lebrun

(2006), Assumption U is an example of assumptions under which the equi-

librium is unique. It requires that the value distributions’ inverse hazard
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rates be strictly decreasing over an interval, however small, in the bottom of

the valuation interval7. In Appendix 3, we prove many of our results under

more general assumptions that allow a mass point at c, as in the presence of

a binding reserve price (in which case, we may assume that the probability

spread below the reserve price is rather concentrated at it.)

Assumption E: F (.; τ) is atomless and is differentiable—with respect

to v—over (c, d] and its derivative8—the density function f (.; τ)—is locally

bounded away from zero over this interval, for all τ in (−ρ, ρ)m.

Assumption U: For all τ in (−ρ, ρ)m, there exists π > 0, which may

depend on τ , such that F (.; τ) is strictly log-concave over (c, c+ π).

As we show below, the differentiability of the equilibrium of the first-

price auction and of RF with respect to the perturbation parameters follows

from Assumption D below. Since Assumption D immediately implies the

assumptions of Proposition 2, RS too is differentiable under D and the first-

order equality between RS and RF follows from Proposition 1 (Section 2).

Assumption D:

(i) F (v; τ) can be extended beyond v = d such that it is continuously

differentiable—with respect to (v; τ)—and ∂
∂v
F (v; τ) is strictly positive over an

open set (c, d+ ζ)× (−ρ, ρ)m, where ζ > 0.
(ii) There exists an integrable function I (v) such that ∂

∂v
F (v; τ) ≤

I (v) over (c, d)× (−ρ0, ρ0)m, where ρ0 is a strictly positive number not larger
than ρ.

(iii) For all 1 ≤ k ≤ m, ∂
∂τk

F (v; τ) is bounded over (c, d)×(−ρ00, ρ00)m,
where ρ00 is a strictly positive number not larger than ρ.

7In Appendix 3, we refer to another uniqueness result from Lebrun (2006). Other
uniqueness results can be found in Corollary 4 in Lebrun (1999), Theorem 1 in Lebrun
(2006), and Appendix 6 in Lebrun (2004).

8The derivative at v = d is a lefthand derivative.
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When the partial derivatives ∂
∂v
F (v; τ) = f (v; τ) and ∂

∂τ l
F (v; τ), 1 ≤

l ≤ m, are continuous over (c, d]× (−ρ, ρ)m, f (v; τ) is strictly positive over
the same set, and f (d; τ) is continuously differentiable with respect to τ in

(−ρ, ρ)m, extending F according to the equality F (v; τ) = 1+f (d; τ) (v − d),

for all v in (d, d+ ζ), satisfies D (i).

We now find when the examples from the previous section satisfy the

assumptions above.

Example 1: Example 1 (Section 2) satisfies Assumption E if F and

H1, ...,Hm are differentiable over (c, d] with respective derivatives f, h1, .., hn
such that f − ρ

Pm
k=1 |hk| is locally bounded away from zero. From our

remark after the statement of Assumption D, it satisfies D(i) under the same

conditions.

Decreasing ρ if necessary, it satisfies Assumption U if, for example, over

an interval [c, c+ ε], where ε > 0, d
dv
f, d

dv
h1, ...,

d
dv
hm exist and are continuous

and F (v) d
dv
f (v)− f (v)2 has a strictly negative maximum.

D (iii) follows immediately from the continuity of H1, ..., Hm. For all τ

in (−ρ/2, ρ/2)nm, |f +Pm
k=1 τkhk| is not larger than f + ρ

2

Pm
k=1 |hk|, which

is integrable since f and hk, 1 ≤ k ≤ n, are, and D (ii) is satisfied.

Example 2: Example 2 (Section 2) satisfies Assumptions E and D (i) if F
and H1, ..., Hm are differentiable over (c, d] with derivatives f, h1, ..., hm such

that f/F−ρPm
k=1 |hk| /Hk is locally bounded away from zero. IfH1, ...,Hm,

and F

µ
mQ
k=1

Hk

¶−ρ
are strictly log-concave in an interval (c, c+ ε), where

ε > 0, it satisfies Assumption U.

We now show that D (ii) and D (iii) are satisfied ifH1, ..., Hm are bounded.

The derivative with respect to v of F (.; τ 1, ..., τm) is equal to

F (v)
mY
k=1

Hk (v)
τk
©

d
dv
lnF +

Pm
k=1 τk

d
dv
lnHk

ª
. Since the expression between
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braces is not smaller than d
dv
lnF+ρ

Pm
k=1

¯̄
d
dv
lnHk

¯̄
and thus9 than 2 d

dv
lnF ,

the derivative is not smaller than 2f (v)
mY
k=1

Hk (v)
τk . Consequently, D (ii)

is satisfied with ρ0 = ρ/2 and I (v) = 2Kf (v), where K is a upper bound of
mY
k=1

Hk (v)
τk , for v in [c, d] and (τ 1, ..., τm) in [−ρ/2, ρ/2]m.

For all 1 ≤ l ≤ m and all (v; τ 1, ..., τm) in (c, d]×(−ρ/2, ρ/2)m, the deriva-
tive with respect to τ l of F (.; τ 1, ..., τm) is equal to F (v) (lnHl (v))

mY
k=1

Hk (v)
τk

or, equivalently:

³
Hl (v)

ρ/2 lnHl (v)
´⎛⎜⎝F (v)Hl (v)

−ρ/2
mY
k=1
k 6=l

Hk (v)
τk

⎞⎟⎠ .
From the properties of the logarithm, the first factor above is bounded. Since

the second factor is a cumulative distribution function, it is also bounded.

Example 2 thus satisfies D (iii) with ρ00 = ρ/2.

Theorem 1 below is the main result of this section.

Theorem 1: Let Assumptions E, U, and D be satisfied. Then:
(i) For all τ = (τ 1, ..., τn) in (−ρ, ρ)nm, there exists one and only

one equilibrium of the first-price auction with n-tuple of value distributions

(F (.; τ1) , ..., F (.; τn)).

(ii) For all v in (c, d] and 1 ≤ i ≤ n, bidder i’s equilibrium bid βi (v; τ ),

interim expected payoff Pi (v; τ ), and ex-ante expected payoff Pi (τ ) are dif-

ferentiable with respect to τ at τ = 0 and the values of the partial derivatives

with respect to the parameters are as in Appendix 2.

(iii) For all 1 ≤ i ≤ n, the auctioneer’s revenues RF (τ ) and RS (τ ) are

differentiable and equal to the first-order at τ = 0.

9Because d
dv lnF − ρ

Pm
i=1

¯̄
d
dv lnHi

¯̄ ≥ 0.
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Proof : See Appendix 3.

We briefly outline the proof of Theorem 1. Consider the three-bidder

case. For all vector of parameters τ = (τ 1, τ 2, τ 3), the bid functions

β1 (.; τ ) , β2 (.; τ ) , β3 (.; τ ) form the unique equilibrium if and only if there

exists c < η < d such that their inverses α1 (.; τ ) , α2 (.; τ ) , α3 (.; τ ) satisfy

the following system of differential equations with boundary conditions:

d lnF (α1 (b; τ ) ; τ
1)

dv
=

1

2

½ −1
α1 (b; τ )− b

+
1

α2 (b; τ )− b
+

1

α3 (b; τ )− b

¾
, (5)

d lnF (α2 (b; τ ) ; τ
2)

dv
=

1

2

½
1

α1 (b; τ )− b
− 1

α2 (b; τ )− b
+

1

α3 (b; τ )− b

¾
, (6)

d lnF (α3 (b; τ ) ; τ
3)

dv
=

1

2

½
1

α1 (b; τ )− b
+

1

α2 (b; τ )− b
− 1

α3 (b; τ )− b

¾
; (7)

α1 (c; τ ) = α2 (c; τ ) = α3 (c; τ ) = c; (8)

α1 (η; τ ) = α2 (η; τ ) = α3 (η; τ ) = d. (9)

η in (9) is the common maximum of the equilibrium bid functions.

Once the differentiability with respect to the bid is established (see Lebrun

1999), the equations (5-7) follow immediately from the first-order conditions.

For example, the first-order condition of bidder 1’s maximization problem

maxb (v1 − b)F (α2 (b; τ ) ; τ
2)F (α3 (b; τ ) ; τ

3) when v1 = α1 (b) gives (10) be-

low. (11) and (12) are bidders 2 and 3’s first-order conditions.

0 +
d lnF (α2 (b; τ ) ; τ

2)

dv
+

d lnF (α3 (b; τ ) ; τ
3)

dv
=

1

α1 (b)− b
,(10)

d lnF (α1 (b; τ ) ; τ
1)

dv
+ 0 +

d lnF (α3 (b; τ ) ; τ
3)

dv
=

1

α2 (b)− b
,(11)

d lnF (α1 (b; τ ) ; τ
1)

dv
+

d lnF (α2 (b; τ ) ; τ
2)

dv
+ 0 =

1

α3 (b)− b
.(12)

Adding up (11) and (12) and subtracting (10), we find (5). The other

equations are obtained similarly.
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We cannot apply the standard theorems regarding the differentiability

with respect to parameters of the solution of a differential system with initial

condition to (5-7) and (8) because the Lipschitz condition does not hold true

at (8), where the denominators in (5-7) vanish. However, it does at (9). If

we knew the exact value of η as a function of the parameters, we could infer

its differentiability and then apply the standard theorems. Unfortunately, all

we know is that it is uniquely determined. We now show how to circumvent

this difficulty.

From Lemma A2-2 in Lebrun (1997) or Lemma A1-1 in Lebrun (2006),

the derivatives in (5-7) are strictly positive. By multiplying the system (5-7)

by the inverse of (5), we find the equivalent system:

d

dq
γ1 (q; τ ) =

1

q

2
−1

F−11 (q;τ1)−γ1(q;τ )
+ 1

F−12 (λ21(q;τ );τ2)−γ1(q;τ )
+ 1

F−13 (λ31(q;τ );τ3)−γ1(q;τ )
,(13)

d

dq
λ21 (q; τ ) =

λ21 (q; τ )

q

1
F−11 (q;τ1)−γ1(q;τ )

− 1
F−12 (λ21(q;τ );τ2)−γ1(q;τ )

+ 1
F−13 (λ31(q;τ );τ3)−γ1(q;τ )

−1
F−11 (q;τ1)−γ1(q;τ )

+ 1
F−12 (λ21(q;τ );τ2)−γ1(q;τ )

+ 1
F−13 (λ31(q;τ );τ3)−γ1(q;τ )

,(14)

d

dq
λ31 (q; τ ) =

λ31 (q; τ )

q

1
F−11 (q;τ1)−γ1(q;τ )

+ 1
F−12 (λ21(q;τ );τ2)−γ1(q;τ )

− 1
F−13 (λ31(q;τ );τ3)−γ1(q;τ )

−1
F−11 (q;τ1)−γ1(q;τ )

+ 1
F−12 (λ21(q;τ );τ2)−γ1(q;τ )

+ 1
F−13 (λ31(q;τ );τ3)−γ1(q;τ )

,(15)

where γ1 (.; τ ) is bidder 1’s bid as a function of his value quantile
10, that is,

γ1 (q; τ ) = β1
¡
F−11 (q; τ 1) ; τ

¢
and λ21, λ31 are the functions that link bidder

1’s value quantile with bidders 2 and 3’s value quantiles at which they submit

the same bid, that is, for example, λ21 (q; τ ) is equal to F2
¡
α2
¡
β1
¡
F−11 (.; τ 1) ; τ

¢
; τ
¢
; τ 2
¢
.

The initial condition (9) is then equivalent to the set of equalities (16) and

(17) below:

γ1 (1; τ ) = η, (16)

λ21 (1; τ ) = λ31 (1; τ ) = 1. (17)

10Working with quantiles as the variables avoids imposing Lipschitz conditions on the
density functions.
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The part (17) of the initial conditions regarding the functions λ21 and λ31 is

now independent of the parameters.

Consider, for example, the function λ21. Since the initial condition (17)

does not depend on τ , its derivative with respect to any combination of

the parameters vanishes. Moreover, if we differentiate the equation (14)

for d
dq
λ21 (q; τ ) with respect to the parameters and use the differentiability

with respect to (q, τ i), which Assumption D (i) implies, of F−1 (q, τ i), the

functions γ1 (q; τ ) and λ31 (q; τ ) disappear. In fact, these functions enter

the same way the numerator and denominator of the R.H.S.’s ratio, which

equals one for any symmetric case and, in particular, for τ = 0.

Although no general explicit expression exists for the maximum bid η,

explicit bounds (see Lemma A3-2, Appendix 3) can be obtained from Le-

brun (1997, 1999). These bounds and Assumption D (iii) guarantee that

the difference ratio in the computation of the derivative of η in the initial

condition (16) stays bounded, thereby entitling us to differentiate (14) with

respect to the parameters. We thus obtain and uniquely solve a completely

determined differential equation with initial condition where the derivative

at τ = 0 of λ21 (q; τ ) with respect to the parameters is the only unknown

function.

In Appendix 3, we actually prove in general the joint differentiability of

the functions such as λ21, λ31 with respect to the vector τ of parameters and

the bid b. This joint differentiability and the definition of these functions

imply the differentiability with respect to the parameters of bidder 1’s in-

terim probability of winning—the product of F2 (α2 (β1 (v1; τ ) ; τ ) ; τ
2) with

F3 (α3 (β1 (v1; τ ) ; τ ) ; τ
3). The differentiability of bidder 1’s bid β1 (v1; τ )

then comes from the envelope theorem, which links it to bidder 1’s probabil-

ity of winning. Thanks to Assumption D (ii), taking the expectation of the

winner’s bid gives expected revenues that are also differentiable with respect

to the parameters.

4. Further Applications

14



In Section 2, we showed how our differentiability results imply properties

of auction revenues. Here, we show two examples of applications that pertain

to stochastic shifts of the value distributions in the first-price auction. The

function F (v; τ) depends on a one-dimensional parameter τ in (−ρ, ρ) such
that, for all τ 0 > τ , F (v; τ 0) strictly dominates F (v; τ) in the sense of the

conditional stochastic dominance, that is, the reverse hazard rate of F (v; τ 0)

is larger than F (v; τ)’s or, equivalently, d
dv
lnF (v; τ 0) > d

dv
lnF (v; τ). It im-

plies that the ratio F (v;τ 0)
F (v;τ)

is strictly increasing. Bidder i becomes “stronger”

in this sense by, in the first application below, engaging in value enhancing

investments and, in the second application, allowing more members in his

cartel.

4.1 Application 1

In the models we consider in this application and the next, the cross

second-order derivatives ∂2

∂v∂τ
lnF (v; 0) and ∂2

∂τ∂v
lnF (v; 0) exist and are equal.

Since, from our assumption of stochastic dominance, ∂2

∂τ∂v
lnF (v; 0) is non-

negative, all the formulas we obtain from the previous section for the first-

order effects (see Appendix 2) are consistent (as they should!) with the exist-

ing literature. For example, we have ∂
∂τj

βi (v;0) ≥ 0, ∂
∂τj

F (αj (b;0) ; 0) ≤ 0,
∂
∂τj

Pi (v;0) ≤ ∂
∂τj

Pj (v;0) ≤ 0, which are consistent with the increase of bid-
der i’s bid function, the stochastic increase of bidder j’s bid distribution,

and the decrease of the bidders’ interim expected payoffs Lebrun (1998)11

describes as consequences of a stochastic increase of bidder j’s value distrib-

ution12. Since bidder j’s value is more likely to be high, his exante expected

11Lebrun (1998) proves these results under the assumption that the bidders can be
divided into two groups, such that the value distributions of the bidders within a group
are identical. By constructing a counterexample, Lebrun (2002, Proposition 1) shows
that these results cannot be extended to asymmetric settings with more than two groups
of bidders.
12These inequalities are also consistent with some properties in Corollary 3 of Lebrun
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payoffmay improve, despite the other bidders’ more aggressive bidding. Nev-

ertheless, it may not. Indeed, Thomas (1997) provides a discrete analytical

example where bidder j’s exante expected payoff actually decreases after a

stochastic improvement of his value distribution. Through numerical com-

putations, Arozamena and Cantillon (2004) provide an example with interval

supports where, after becoming stronger, bidder j also sees his expected pay-

off go down. Here, thanks to our explicit formulas for the first-order effects,

it is simple to analytically generate examples where ∂
∂τj

Pj (0) < 0. More-

over, as we state in Corollary 1 below, such examples may be constructed

as stochastic changes of any differentiable absolutely continuous distribution

whose density does not go to infinity too fast at c.

Corollary 113:
(i) Let F (v; τ) in (1) satisfy Assumptions E,U, and D with m = 1.

Let also F (v; τ) be strictly increasing in τ for the conditional stochastic

dominance and let ∂2

∂v∂τ
lnF (v; 0) and ∂2

∂τ∂v
lnF (v; 0) exist and be equal, for

all v in (c, d]. If the inequality (18) below holds true:Z d

c

F (v; 0)n−1K (v)
∂

∂τ
lnF (v; 0) dv < 0, (18)

where K (v) = 1− 2n−1
n−1 F (v; 0)−

R d
c F (w;0)n−1dw
F (v;0)n−1 f (v), for all v in (c, d], then

we have ∂
∂τ i

Pi (0) < 0, for all 1 ≤ i ≤ n.

(ii) Let F be an absolutely continuous cumulative distribution function

that is differentiable with a derivative f locally bounded away from zero over

(1999) according to which, within any equilibrium: a bidder bids higher than another
bidder whose value distribution his distribution conditionally dominates (for the two-
bidder case, see also Proposition 3.3 in Maskin and Riley, 2000); and the same first-order
relation of stochastic dominance holds true between bidders’ bid distributions as between
their value distributions. See Application 2 below for another example of a link between
first-order comparative statics and previously known properties of strategies within the
same equilibrium.
13We prove in Appendix 4 the more general Corollary 1’, which allows c to be a mass

point.
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(c, d] and such that F is strictly log-concave over an interval (c, c+ ε), with

ε > 0, and (v − c) f (v) tends towards zero as v tends towards c.

Then, there exists F (v; τ) that satisfies Assumptions E,U,D, is increasing

in τ for the conditional stochastic dominance, and is such that F (v; 0) =

F (v) and ∂
∂τ i

Pi (0) < 0, for all 1 ≤ i ≤ n.

Proof : See Appendix 4.

For example, from Corollary 1, there exist stochastic improvements of

a bidder’s uniform value distribution F (v) = v over [0, 1] that make him

worse off in the first-price auction. From the construction in the proof of

Corollary 1, the function F (v; τ) = v exp
n
−τ (1− v)θ

o
, where θ > 4, de-

scribes such improvements. Starting from the uniform symmetric model,

because of the indirect strategic effect through the change of the other bid-

ders’ equilibrium strategies, bidder i would not improve his value distribution

to v exp
n
−τ (1− v)θ

o
, for a small positive τ , even if he could do so at no

direct cost.

4.2 Application 2

In this application, F (v; τ) is the value distribution of a cartel of 1 + τ

bidders. When bidders do not exert any positive or negative effect on their

fellow cartel members, F (v; τ) is simply the distribution of the maximum of

the members’ values, that is, when the values are independently and identi-

cally distributed according to F (v; 0): F (v; τ) = F (v; 0)1+τ , ∂ ln
∂v
F (v; τ) =

(1 + τ) ∂ ln
∂v
F (v; 0), and (∂ ln)2

∂τ∂v
F (v; τ) = 1. For all k > 0, F (v; 0)1+τ can as

well be interpreted as the value distribution of a cartel that counts k/τ + k

members, each with the value distribution F (v; 0)τ/k. Waehrer (1997) proves

that, in any equilibrium of the first-price auction among such cartels, a cartel

has a smaller per-member average payoff than any smaller cartel.

17



Since Example 2 in Sections 2 and 3 encompasses this model, the equilib-

rium is differentiable around the symmetric case—of equal-size cartels—when

Assumptions E,U, and D are satisfied. Assume this is the case. Then, the

derivative ∂
∂τ i

APi (0) of cartel i’s average payoff with respect to τ i, or with re-

spect to its size 1+τ i, must not exceed its derivative ∂
∂τj

APi (0) with respect

to τ j, for all j 6= i, that is, ∂
∂τ i

APi (0) ≤ ∂
∂τj

APi (0). Otherwise, after a trans-

fer of dτ bidders from cartel j to cartel i, cartel i’s average payoff would be

larger than cartel j’s by an amount equal to
¡

∂
∂τ i

APi (0)− ∂
∂τj

APi (0)
¢
dτ >

0, which would contradict Waehrer (1999)’s result. Here, from our explicit

formulas for the partial derivatives, we prove Corollary 2 below, according

to which the strict inequality ∂
∂τ i

APi (0) <
∂
∂τj

APi (0) actually holds.

Transfers of bidders into a cartel have one obvious detrimental direct ef-

fect on the cartel’s average payoff—the increase of the number of members—and

two beneficial direct effects—the stochastic increase of its value distribution

and the stochastic decrease of its competitors’ value distributions. An addi-

tional detrimental strategic or indirect effect is also present: the other cartels

bid more aggressively. From Corollary 2 below, the detrimental effects out-

weigh the beneficial ones and cause the expanding cartel’s average payoff to

decrease.

When, because of diseconomies of scale in the cartel size, F (v; 0)1+τ dom-

inates F (v; τ) for τ > 0, we have (∂ ln)2

∂τ∂v
F (v; 0) ≤ 1. This new adverse direct

effect contribute, by slowing the increase of the expanding cartel’s value

distribution and the decrease of the competing shrinking cartels’ value dis-

tributions, to make accepting transfers unattractive14. We have Corollary 2

below: this intuition is correct.

Corollary 215: Let F (v; τ) in (1) satisfy Assumptions E,U, and D with
14It is straightforward to extendWaehrer (1999)’s result, which compares average payoffs

within the same equilibrium, from the assumption (∂ ln)2

∂τ∂v F (v; τ) = 1 to the assumption
(∂ ln)2

∂τ∂v F (v; τ) ≤ 1, for all (v; τ).
15In Appendix 4, we prove Corollary 2’, which, since it allows c to be a mass point, is

more general than Corollary 2.
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m = 1 and ρ < 1. Let F (v; τ) be strictly increasing in τ for the conditional

stochastic dominance and let ∂2

∂v∂τ
lnF (v; 0) and ∂2

∂τ∂v
lnF (v; 0) exist and be

equal, for all v in (c, d]. Let APi (τ ) be defined as follows:

APi (τ ) =
Pi (τ )

1 + τ i
,

for all 1 ≤ i ≤ n and τ in (−ρ, ρ)n. Then, if (∂ ln)2

∂τ∂v
F (v; 0) ≤ 1, for all v

in (c, d], we have:
∂

∂τ i
APi (0) ≤ ∂

∂τ j
APi (0) ,(19)

for all i 6= j. Moreover, if there exists ε > 0 such that (∂ ln)2

∂τ∂v
F (v; 0) > 0,

for all v in (d− ε, d), the inequality in (19) is strict.

Proof : See Appendix 4.

Thus, in the first-price auction, admitting transfers into a cartel can only

make sense when the additional bidders are numerous or strong enough, that

is, dτ is large enough, or when there are strong enough synergies, that is,
(∂ ln)2

∂τ∂v
F (v; 0) is large enough. To illustrate this point, assume that, in the

case (∂ ln)
2

∂τ∂v
F (v; τ) = 1 without synergies, two cartels of five bidders each form

out of 10 bidders whose values are identically distributed over [0, 1] according

to F (v) = v1/2. From the standard formulas for the symmetric case, one

can easily compute that the per-member average payoff of each cartel is

0.0238. From the numerical estimations16 in Marshall, Meurer, Richard,

and Stromquist (1994), if only one bidder is transferred from one cartel to

the other, the average payoff of the cartel with the new bidder drops to 0.0233

(while the average payoff of the other cartel jumps to 0.0261). However, if

two more bidders are transferred, the average payoff of the larger cartel, now

16Marshall et al (1994) actually consider a total of five bidders with uniformly distributed
values. The figures for our 6-4 and 8-2 splits come from their figures for the 3-2 and 4-1
splits.
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counting eight members, becomes 0.0283.

5. Conclusion

We showed that, under joint differentiability of the equilibrium with re-

spect to the parameters, the equality in the symmetric case between the

revenues of two anonymous auction mechanisms is to the first-order in the

asymmetry parameters. We proved this differentiability for the second-price

and first-price auctions. For the first-price auction, we obtained general for-

mulas for the first-order effects of a change of parameters on the equilibrium

bids and payoffs. As examples of other applications, we showed how to

analytically generate continuous cases where shifting a bidder’s distribution

towards higher values lowers his payoff, and we proved that, without strong

synergies, it is unprofitable for a cartel to become slightly larger than its

competitors through transfers of members.

Appendix 1

Proof of Proposition 1 (Section 2): Let D be the m-dimensional

linear space spanned by the vectors (τ 1, ..., τn) such that τ i = τ j, for all

1 ≤ i, j ≤ n. Let D⊥ be its orthogonal complement. By definition, the

dimension of D⊥ is nm−m = (n− 1)m and we have Rnm = D⊕D⊥. The

space D⊥ is the set of vectors (τ 1, ..., τn) such that
Pn

i=1 τ
i = 0. It is equal

to the direct sum ⊕n
l=2Vl, where Vl is the m-dimensional space spanned by

the vectors (τ 1, ..., τn) such that τk = 0, for all k 6= 1, l, and τ l = −τ 1.
Let N be equal to M or S. Let dRN (0) be the differential of RN at

0, considered as a linear function from Rnm to R. Let l between 2 and n

and let τ be an element of Vl. If the derivative of RN at 0 in the direction

of τ was different from zero, the values RN (λτ ) and RN (−λτ ) would be
different, for all number λ close enough to zero. However, this is impossible,

since λτ and −λτ are equal up to a permutation of their n components and
RN is symmetric. Consequently, dRN (0) vanishes over D⊥.
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The derivative of RM at 0 in any direction
¡
δ1, ..., δn

¢
is thus equal to

its derivative in the direction of the orthogonal projection projD
¡
δ1, ..., δn

¢
of
¡
δ1, ..., δn

¢
over D. Since, by assumption, RM and RS coincide over D,

it is also equal to the derivative ofRS in the same direction. Proposition 1 (ii)

then follows from the equality projD
¡
δ1, ..., δn

¢
=
¡Pn

i=1 δ
i/n, ...,

Pn
i=1 δ

i/n
¢
„

which can be proved by checking that the difference between
¡
δ1, ..., δn

¢
and¡Pn

i=1 δ
i/n, ...,

Pn
i=1 δ

i/n
¢
is orthogonal to any vector (τ , ..., τ ) in D.

Let ∆ (τ ) be the difference RM (τ )−RS (τ ) and let d∆ (0) be its differ-

ential at 0. Since, d∆ (0) is equal to dRM (0)−dRS (0), it also vanishes over

D⊥. By assumption, ∆ vanishes over D and hence so does its differential

d∆ (0). We have proved that the differential d∆ (0) vanishes everywhere

over Rnm. Proposition 1 (i) follows. ||

Appendix 2

The formulas in 2., 3., 4. below hold true if ∂
∂τ l

F (v; 0) is differentiable

with respect to v in (c, d], for all 1 ≤ l ≤ m, and in 5., 6. if ∂2

∂v∂τ l
lnF (v; 0) and

∂2

∂τ l∂v
lnF (v; 0) exist and are equal. Without these additional assumptions,

the formulas are less compact.

1. λji (.; τ ) = F (.; τ j) ◦ αj (.; τ ) ◦ βi (.; τ ) ◦ F (.; τ i)−1:

∂

∂τ jl
λji (q;0) = − ∂

∂τ il
λji (q;0)

= (n− 1) q
ÃZ F−1(q;0)

c

F (w; 0)n−1 dw

!n−1

.

Z 1

q

pn−2 ∂
∂τ l

F (F−1 (p; 0) ; 0)

f (F−1 (p; 0) ; 0)
³R p−1(q;0)

c
F (w; 0)n−1 dw

´ndp; (A2.1)
∂

∂τhl
λji (q;0) = 0, for all h 6= i, j.
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2. ϕki (.; τ ) = αk (.; τ ) ◦ βi (.; τ ):

∂

∂τ jl
ϕji (v;0) = − ∂

∂τ il
ϕji (v;0)

=

R d
v

d ∂
∂τl

lnF (w;0)

(
R w
c F (x;0)n−1dx)

n−1

f(v;0)

F (v;0)(
R v
c F (x;0)n−1dx)

n−1
;

∂

∂τhl
ϕji (v;0) = 0, for all h 6= i, j.

3. Equilibrium bid functions17:

∂

∂τ jl
βi (v;0)

=
n− 1
n

⎧⎪⎨⎪⎩
R v
c (
R w
c F (z;0)n−1dz)d ∂

∂τl
lnF (w;0)

F (v;0)n−1

+
(
R v
c F (w;0)n−1dw)

n

F (v;0)n−1
R d
v

d ∂
∂τl

lnF (y;0)

(
R y
c F (w;0)n−1dw)

n−1

⎫⎪⎬⎪⎭ ;

∂

∂τ il
βi (v;0)

=
n− 1
n

⎧⎪⎨⎪⎩
R v
c (
R w
c F (z;0)n−1dz)d ∂

∂τl
lnF (w;0)

F (v;0)n−1

− (n− 1) (
R v
c F (w;0)n−1dw)

n

F (v;0)n−1
R d
v

d ∂
∂τl

lnF (y;0)

(
R y
c F (w;0)n−1dw)

n−1

⎫⎪⎬⎪⎭ .
17The derivative of βi (v; τ ) at τ = 0 in the direction

¡
δ1, ..., δn

¢
, where δjk = 0 if k 6= j

and δkk = 1, is equal to
nP
j=1

∂
∂τjj

βi (v;0). Substituting in this expression the formulas below,

applied to Example 1 (Section 2), easily gives (after some rearranging and one integration
by parts) the first-order effect that Fibich and Gavious (2003) find the perturbations (3)
have on the bid functions.
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4. Interim expected payoffs:

∂

∂τ il
Pi (v;0)

= −n− 1
n

⎧⎨⎩
R v
c

¡R w
c
F (z; 0)n−1 dz

¢
d ∂
∂τ l
lnF (w; 0)

+
¡R v

c
F (w; 0)n−1 dw

¢n R d
v

d ∂
∂τl

lnF (y;0)

(
R y
c F (w;0)n−1dw)

n−1

⎫⎬⎭ ;

∂

∂τ jl
Pi (v;0)

=
∂

∂τ il
Pi (v;0)

+ (n− 1)
µZ v

c

F (w; 0)n−1 dw
¶n Z d

v

F (y; 0)n−1 d ∂
∂τ l
lnF (y; 0)¡R y

c
F (w; 0)n−1 dw

¢n .

5. Ex-ante expected payoffs:

∂

∂τ jl
Pi (0)

=
n− 1
n

Z d

c

Z v

c

F (z; 0)n−1
∂

∂τ l
lnF (z; 0) dzdF (v; 0)

+
1

n

Z d

c

∂

∂τ l
lnF (v; 0)

Z v

c

F (z; 0)n−1 dzdF (v; 0)

+
1

n

Z d

c

ÃZ d

v

d∂ ln
∂τ l

F (y; 0)¡R y
c
F (z; 0)n−1 dz

¢n−1
!µZ v

c

F (z; 0)n−1 dz
¶n

dF (v; 0) ;
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∂

∂τ il
Pi (0)

=
∂

∂τ jl
Pi (0)

+

Z d

c

Ã
(∂ ln)2

∂τ l∂v
F (v; 0)− 1

!µZ v

c

F (w; 0)n−1 dw
¶
dF (v; 0)

−
Z d

c

ÃZ d

v

d∂ ln
∂τ l

F (y; 0)¡R y
c
F (z; 0)n−1 dz

¢n−1
!µZ v

c

F (z; 0)n−1 dz
¶n

dF (v; 0)

+

Z d

c

Z v

c

F (w; 0)n−1 dwdF (v; 0) .

6. Cartels’ per-bidder average ex-ante expected payoffs:

∂

∂τ jl
APi (0) =

∂

∂τ jl
Pi (0) ;

∂

∂τ il
APi (0) =

∂

∂τ il
Pi (0)−

Z d

c

Z v

c

F (w; 0)n−1 dwdF (v; 0) .

Appendix 3

Throughout Appendices 3 and 4, we maintain the assumption from the

main text that F (.; τ) ((1), Section 2) be absolutely continuous over [c, d].

Assumption EU’ below pertains to the case of a mass point at c. It

is satisfied by Example 1 (Section 2) if F (c) − ρ
Pm

k=1 |Hk (c)| > 0 and by

Example 2 (Section 2) if F (c) , H1 (c) , ..., Hm (c) > 0.

Assumption EU’: F (.; τ) has a mass point at c and is differentiable—

with respect to v—over [c, d] with a derivative18—the density function f (.; τ)—

that is bounded away from zero over this interval, for all τ in (−ρ, ρ)m.
18The derivative at c is a righthand derivative.
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In this appendix, we prove Theorem 1’ below, which extends Theorem 1

(Section 3)19.

Theorem 1’:
(i) Let either Assumptions E and U or Assumption EU’ be satisfied.

Then, for all τ = (τ 1, ..., τn) in (−ρ, ρ)nm, there exists one and only one equi-
librium of the first-price auction with n-tuple of value distributions (F (.; τ 1) , ..., F (.; τn)).

(ii) Let either Assumptions E and U or Assumption EU’ be satisfied.

Let also Assumptions D (i) and (iii) be satisfied. Then, for all v in (c, d]

and 1 ≤ i ≤ n, bidder i’s equilibrium bid βi (v; τ ), interim expected payoff

Pi (v; τ ), and exante expected payoff Pi (τ ) are differentiable with respect

to τ at τ = 0 and the values of the partial derivatives with respect to the

parameters are as in Appendix 2.

(iii) Let Assumptions E, U, and D be satisfied. Then, for all 1 ≤ i ≤ n,

the auctioneer’s revenues RF (τ ) and RS (τ ) are differentiable and equal to

the first-order at τ = 0.

We divide the proof of Theorem 1’ into several lemmas. First, we have

19Further generalizations are possible. For example, Theorem 1 (i) and (ii) can be
proved under Assumption D (i), either Assumptions E, U or Assumption EU’, and the
following assumption:

There exist 0 < σ < ρ, functions l and u defined over (c, d] × (0, σ), and an integrable
function k defined over (c, d] such that:

1. For all (v, σ0) in (c, d]× (0, σ) and τ i, τ j in (−σ0, σ0)m,

l (v;σ0)

≤ F
¡
v; τ i

¢
min

w∈[v,d]
F
¡
w; τ j

¢
F (w; τ i)

≤ F
¡
v; τ i

¢
max
w∈[v,d]

F
¡
w; τ j

¢
F (w; τ i)

≤ u (v;σ0) ;

2. |l(v;σ0)−F (v)|
σ0 and |u(v;σ

0)−F (v)|
σ0 are not larger than k (v) over (c, d]× (0, σ).
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Lemma A3-1 below.20

Lemma A3-1: Let either Assumptions E and U or Assumption EU’ be
satisfied. Then, for all τ = (τ 1, ..., τn) in (−ρ, ρ)nm:
(i) There exists an “essentially” unique Bayesian equilibrium (β1 (.; τ) , ..., βn (.; τ))

of the first-price auction with value distributions F1 = F (.; τ 1) , ..., Fn =

F (.; τn). This equilibrium is pure and there exists c < η < d such that the

inverse bid functions α1 = β−11 , ..., αn = β−1n exist, are strictly increasing,

and form a solution over (c, η] of the system of differential equations (A3.1)

below—considered in the domain D = {(b, α1, .., αn) ∈ Rn+1|c, b < αi ≤ d, for all 1 ≤ i ≤ n}—
and satisfy the boundary conditions (A3.2-3.3):

d lnF
¡
αk (b; τ ) ; τ

k
¢

db
=

1

n− 1

⎧⎪⎨⎪⎩ − (n− 2)
αk (b; τ )− b

+
nX
l=1
l 6=k

1

αl (b; τ )− b

⎫⎪⎬⎪⎭ , for all 1 ≤ k ≤ n; (A3.1)

αk (η) = d, for all 1 ≤ k ≤ n; (A3.2)

αi (c) = c, for all but at most one i between 1 and n; (A3.3)

and βk (v; τ ) = c, for all v in (c, αk (c; τ )], and βk (c; τ ) = OUT , for all

1 ≤ k ≤ n. Moreover, d
db
αk (b; τ ) > 0, for all 1 ≤ k ≤ n and all b in (c, η].

(ii) For all 1 ≤ i ≤ n, the functions λji (.; τ ) = F (.; τ j) ◦ αj (.; τ ) ◦
βi (.; τ ) ◦ F (.; τ i)−1, with 1 ≤ j ≤ n and j 6= i, and γi (.; τ ) = βi (.; τ ) ◦
F (.; τ i)

−1 are differentiable (with respect to the first argument) over (F (αi (c; τ ) ; τ
i) , 1]

and form a solution of the system (A3.4-3.5)—considered in the domain Di—

20In Lemma A3-1 (i), bidding OUT means remaining out of the auction. “Essential”
uniqueness refers to uniqueness for values in (c, d]. The only possible indeterminacy for
an essentially unique equilibrium is at the lowest value c, where some bidders may choose
OUT , c, or randomize between the two. Here, we assume that every bidder k submits
OUT at c. All equilibria can be characterized as in Lebrun (1997) by replacing this
assumption by the following condition:
If there exists j such that αj (c; τ ) > c, then βi (c; τ ) = OUT , for all i 6= j, and

βj (vj ; τ ) = c, for all vj in (c, αj (c; τ )].
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with initial condition (A3.6):

Di =

( ³
q, (λji)j 6=i , γi

´
|F (c; τ i) < q ≤ 1, F (c; τ j) < λji ≤ 1,

and γi < F−1 (q; τ i) , F−1 (λji; τ j) , for all j 6= i

)

d

dq
λji (q; τ )

=
λji (q; τ )

q

−(n−2)
F−1(λji(q;τ );τj)−γi(q;τ ) +

1
F−1(q;τ i)−γi(q;τ ) +

Pn
l=1
l 6=j,i

1

F−1(λli(q;τ );τ l)−γi(q;τ )
−(n−2)

F−1(q;τ i)−γi(q;τ ) +
1

F−1(λji(q;τ );τj)−γi(q;τ ) +
Pn

l=1
l 6=j,i

1

F−1(λli(q;τ );τ l)−γi(q;τ )
(A3.4)

d

dq
γi (q; τ ) =

1

q

n− 1
−(n−2)

F−1(q;τ i)−γi(q;τ ) +
1

F−1(λji(q;τ );τj)−γi(q;τ ) +
Pn

l=1
l 6=j,i

1

F−1(λli(q;τ );τ l)−γi(q;τ )
;(A3.5)

λji (1; τ ) = 1, γi (1; τ ) = η.(A3.6)

(iii) For all 1 ≤ i ≤ n and v in (c, d], (A3.7) below holds true:

βi (v; τ ) = v −

R v
c

nY
k=1
k 6=i

F
¡
ϕki (w; τ ) ; τ

k
¢
dw

nY
k=1
k 6=i

F (ϕki (v; τ ) ; τ
k)

, (A3.7)

where ϕki (.; τ ) = αk (.; τ ) ◦ βi (.; τ ).
(iv) If τ 1 = ... = τn, then:

βi (v; τ ) = v −
R v
c
F (w; τ i)

n−1
dw

F (v; τ i)n−1
,

for all 1 ≤ i ≤ n and v in (c, d].

Proof : The existence of an equilibrium in (i) follows from Theorem 2

in Lebrun (1999) and its characterization from Theorem 1 in Lebrun (1999).
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The uniqueness in (i) under E and U follows from Corollary 1 in Lebrun

(1999). The uniqueness under EU’ follows from Theorem 1 in Lebrun

(2006).

(ii) follows from Lemma A2-5 in Lebrun (1997) or from Lemma A1-1 in

Lebrun (2006). An application, standard in auction theory, of the envelope

theorem gives (iii) ((iii) also follows from Lemma A2-6 in Lebrun 1997). (iv)

follows from Corollary 3 (v) in Lebrun (1999). ||

Although not explicitly proved in Lebrun (1997), Lemma A3-2 below can

easily be derived from the proof of its Lemma A2-3. We provide the proof

for the sake of completeness.

Lemma A3-2: Let either Assumptions E and U or Assumption EU’ be
satisfied. Then, for all τ in (−ρ, ρ)nm , all v in (c, d], and all 1 ≤ i, j ≤ n,

we have:

F
¡
v; τ i

¢
min
w∈[v,d]

F (w; τ j)

F (w; τ i)
≤ F

¡
ϕji (v; τ ) ; τ

j
¢ ≤ F

¡
v; τ i

¢
max
w∈[v,d]

F (w; τ j)

F (w; τ i)
,

where ϕji (v; τ ) is equal to αj (βi (v; τ ) ; τ ).

Proof : Subtracting the equation in (A3.1) for
d lnF(αi(b;τ );τ i)

db
from the

equation for
d lnF(αj(b;τ );τj)

db
, we find:

d lnF (αj (b; τ ) ; τ
j)

db
−d lnF (αi (b; τ ) ; τ

i)

db
=

1

αi (b; τ )− b
− 1

αj (b; τ )− b
.(A3.8)

Let u be in (c, d] and let z > 0 such that z < minw∈[u,d]
F(w;τj)
F (w;τ i)

.

Define y in [u, d] as follows: y = inf {w in [u, d] |zF (w; τ i) ≥ F (c; τ j)},
with the convention d = inf∅. Since ϕji (w; τ) ≥ c, for all w, we have

zF (w; τ i) ≤ F
¡
ϕji (w; τ ) ; τ

j
¢
, for all w in (u, y). Suppose v in (y, d] is such

that zF (v; τ i) = F
¡
ϕji (v; τ ) ; τ

j
¢
. Then, ϕji (v; τ ) > c. From (A3.8), we
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have:

d lnF
¡
ϕji (v; τ ) ; τ

j
¢

dv
=

d lnF (v; τ i)

dv
+

d

dv
βi (v; τ )

½
1

v − βi (v; τ )
− 1

ϕji (v; τ )− βi (v; τ )

¾
.(A3.9)

By definition of z, we have z <
F(v;τj)
F (v;τ i)

and thus zF (v; τ i) < F (v; τ j). Con-

sequently, ϕji (v; τ ) < v. Since d
dv
ln zF (v; τ i) = d

dv
lnF (v; τ i), (A3.9) then

implies
d lnF(ϕji(v;τ );τj)

dv
< d

dv
ln zF (v; τ i). Moreover, from the definition of z,

zF (d; τ i) = z < 1 = F (d; τ j) = F
¡
ϕji (d; τ ) ; τ

j
¢
. From a variant of Lemma

2 in Milgrom andWeber (1982), we obtain zF (w; τ i) ≤ F
¡
ϕji (w; τ ) ; τ

j
¢
, for

allw in [y, d], hence in [u, d], and, in particular, zF (u; τ i) ≤ F
¡
ϕji (u; τ ) ; τ

j
¢
.

Finally, making z tend towardsminw∈[u,d]
F(w;τj)
F (w;τ i)

, we find F (u; τ i)minw∈[u,d]
F(w;τj)
F (w;τ i)

≤
F
¡
ϕji (u; τ ) ; τ

j
¢
. The other inequality can be proved similarly. ||

Lemma A3-3: Let either Assumptions E and U or Assumption EU’ be
satisfied. Let also Assumptions D (i) and (iii) be satisfied. Let η (τ ) be

the common maximum of the equilibrium bid functions β1 (.; τ ) , ..., βn (.; τ ),

for all τ in (−ρ, ρ)nm. Then, there exists K and 0 < ρ0 < ρ such that
|η(0)−η(τ )|

|τ | ≤ K, for all τ in (−ρ0, ρ0)nm.

Proof : From Lemma A3-2, we have:

F
¡
v; τ i

¢
min
w∈[v,d]

F (w; τ j)

F (w; τ i)
≤ F

¡
ϕji (v; τ ) ; τ

j
¢ ≤ F

¡
v; τ i

¢
max
w∈[v,d]

F (w; τ j)

F (w; τ i)
,

where ϕji (v; τ ) is equal to αj (βi (v; τ ) ; τ ), for all 1 ≤ i, j ≤ n, τ in
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(−ρ, ρ)nm, and v in (c, d]. From Assumption D (iii), we then have:

F (v; τ i)

µ
1− M |τ j − τ i|

F (v; τ i)

¶
= F (v; τ i) min

w∈[v,d]

µ
1− M |τ j − τ i|

F (w; τ i)

¶
≤ F

¡
ϕji (v; τ ) ; τ j

¢ ≤
F (v; τ i) max

w∈[v,d]

µ
1 +

M |τ j − τ i|
F (w; τ i)

¶
= F (v; τ i)

µ
1 +

M |τ j − τ i|
F (v; τ i)

¶
,(A3.10)

and thus:

F (v; 0)−M (|τ j|+ 2 |τ i|) ≤ F
¡
ϕji (v; τ ) ; τ j

¢ ≤ F (v; 0) +M (|τ j|+ 2 |τ i|) ,

whereM is an upper bound of ∂
∂τ1

F (v; τ) , ..., ∂
∂τm

F (v; τ) over (c, d]×(−ρ00, ρ00)m,
for all 1 ≤ i, j ≤ n, τ in (−ρ00, ρ00)nm, and v in (c, d].

From Lebrun (1999) (or the envelope theorem), we have, for 1 ≤ i ≤ n,

η (τ ) = d− R d
c

nY
j=1
j 6=i

F
¡
ϕji (v; τ ) ; τ j

¢
dv and thus, from (A3.10):

Z d

c

F (v; 0)n−1 − (F (v; 0) +M (|τ j|+ 2 |τ i|))n−1
|τ | dv

≤ η (0)− η (τ )

|τ |
≤

Z d

c

F (v; 0)n−1 −max (0, F (v; 0)−M (|τ j|+ 2 |τ i|))n−1
|τ | dv,(A3.11)

for all (v; τ ) in (c, d]×(−ρ00, ρ00)nm. From the mean value theorem, for all v in
(c, d], there exists x between F (v; 0) and F (v; 0)+M (|τ j|+ 2 |τ i|), such that
F (v;0)n−1−(F (v;0)+M(|τj |+2|τ i|))n−1

|τ | is equal to − (n− 1)xn−2M(|τj |+2|τ i|)
|τ | . Since

0 ≤ x ≤ 1 + 3ρ00M and 0 ≤ |τj |+2|τ i|
|τ | ≤ 3, there exists a finite K 0 such that

the L.H.S. of the first inequality in (A3.11) is not smaller thanK 0. Similarly,

there exists a finite K 00 such that the R.H.S of the second inequality is not

larger than K 00, for all τ in (−ρ00, ρ00)nm. The lemma follows. ||
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Lemma A3-4: Let either Assumptions E and U or Assumption EU’ be
satisfied. Let also Assumptions D (i) and (iii) be satisfied. Then, αi (c; τ )

is continuous with respect to τ at τ = 0.

Proof : From Lemma A3-3, η (τ ) is a continuous function of τ at τ = 0.
From Lemma A3-1 (i) and from the continuity, under our assumptions, of

the solution of a differential system with respect to the parameters and to

the value of the solution at the initial condition, we know that for all b in

the interior (c, η (0)) of the definition domain of α1 (.,0) = ... = αn (.,0) and

for all ε > 0, there exists δ > 0 such that, for all 1 ≤ i ≤ n, αi (., τ ) is

defined at b and |αi (b, τ )− αi (b,0)| ≤ ε if |τ | < δ. Consequently, for all b

in (c, η (0)), lim supτ→0 αi (c, τ ) ≤ αi (b,0) ≤ b. By making b tend towards

c, we find lim supτ→0 αi (c, τ ) ≤ c. Since αi (c, τ ) is never smaller than c,

we have limτ→0 αi (c, τ ) = c and Lemma A3-4 is proved. ||

Lemma A3-5: Let Assumption D (i) be satisfied and let F be extended

over (c, d+ ζ) × (−ρ, ρ)m, with ζ > 0, as in D (i). Then, there exists

ζ 0 > 0 such that F−1 (q; τ) exists and is (jointly) continuously differentiable

with respect to (q; τ) over {(q, τ) |τ ∈ (−ρ, ρ)m , q ∈ (F (c; τ) , 1 + ζ 0)}, and,
for all (q, τ) in this set and all 1 ≤ l ≤ m, we have:

∂

∂q
F−1 (q; τ) =

1

f (F−1 (q; τ) ; τ)
,

∂

∂τ l
F−1 (q; τ) =

− ∂
∂τ l

F (F−1 (q; τ) ; τ)

f (F−1 (q; τ) ; τ)
.

Proof : It suffices to apply the inverse function theorem to the function
F such that F (v, τ) = (F (v; τ) , τ), for all (v; τ) in (c, d+ ζ)× (−ρ, ρ)m. ||

Lemma A3-6: Let either Assumptions E and U or Assumption EU’

be satisfied. Let also Assumptions D (i) and (iii) be satisfied and let F

be extended over (c, d+ ζ) × (−ρ, ρ)m, with ζ > 0, as in D (i). Let τ (π)
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be a continuously differentiable function from (−1, 1) to (−ρ, ρ)nm such that
τ (0) = 0. Then, for all sequence (∆πk)k≥1 of strictly positive numbers

converging towards 0, there exists a subsequence (∆πkt)t≥1 such that, for

all q in an interval (F (c; 0) , 1 + ζ 0) with ζ 0 > 0 and all 1 ≤ i 6= j ≤ n,

limt→+∞
λji(q;0)−λji(q;τ (∆πkt))

∆πkt
exists, is finite, and is equal to λji (q) below:

λji (q) = q

ÃZ F−1(q;0)

c

F (w; 0)n−1 dw

!n−1

.⎧⎨⎩
Pm

l=1 (n− 1)
R 1
q

pn−2 ∂
∂τl

F(F−1(p;0);0)

f(F−1(p;0);0)
³R p−1(q;0)

c F (w;0)n−1dw
´ndp¡

d
dπ
τ jl (0)− d

dπ
τ il (0)

¢
.

⎫⎬⎭ .(A3.12)

Proof : For all τ in (−ρ, ρ)nm, let η (τ ) be the common maximum of the
equilibrium bid functions. From Lemma A3-3, there exists a subsequence

(∆πkt)t≥1 such that limt→+∞
η(0)−η(τ (∆πkt))

∆πkt
exists and is finite. Let χ be

this limit. For all 1 ≤ i 6= j ≤ n and q > F (αi (c;0) ; 0), we may as-

sume, from Lemma A3-1 (ii) and Lemma A5-2 in Appendix 5, that λji (q) =

limt→+∞
λji(q;0)−λji(q;τ (∆πkt))

∆πkt
and γi (q) = limt→+∞

γi(q;0)−γi(q;τ(∆πkt))
∆πkt

exist

and form a solution of the linear differential system obtained from (A3.4-3.5)

by differentiating it around its solution λji (.;0) , γi (.;0), and of the initial

condition below:

λji (1) = 0, j 6= i, (A3.13)

γi (1) = χ.

Differentiating (A3.4) with respect to π, setting π = 0, using the equalities

τ (0) = 0 and λji (q;0) = q, for all q in the interval (F (c; 0) , 1 + ζ 0), where

ζ 0 is from Lemma A3-5, and rearranging, we find that the coefficients of λhi,
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h 6= j, i, and γi cancel out in λji’s equation, and we have:

d

dq
λji (q) =

n− 1
F−1 (q; 0)− γi (q; 0)

mX
l=1

∂

∂τ l
F−1 (q; 0)

µ
d

dπ
τ jl (0)−

d

dπ
τ il (0)

¶
+

½
∂

∂q
F−1 (q; 0)

n− 1
F−1 (q; 0)− γi (q; 0)

+
1

q

¾
λji (q) .

From Lemma A3-1 (iv)21 and Lemma A3-5, we obtain:

d

dq
λji (q) = − (n− 1) qn−1

f (F−1 (q; 0) ; 0)
R F−1(q;0)
c

F (w; 0)n−1 dw
.

mX
l=1

∂

∂τ l
F
¡
F−1 (q; 0) ; 0

¢µ d

dπ
τ jl (0)−

d

dπ
τ il (0)

¶

+

(
(n− 1) qn−1

f (F−1 (q; 0) ; 0)
R F−1(q;0)
c

F (w; 0)n−1 dw
+
1

q

)
λji (q) .(A3.14)

Using, for example, the method of “variation of constants,” we easily find

that the unique solution of (A3.13) and (A3.14) is (A3.12). ||

Lemma A3-7: Let either Assumptions E and U or Assumption EU’ be
satisfied. Let also Assumptions D (i) and (iii) be satisfied and let F be

extended over (c, d+ ζ) × (−ρ, ρ)m, with ζ > 0, as in D (i). Then, for all

1 ≤ i 6= j ≤ n and q in an interval (F (c; 0) , 1 + ζ 0), with ζ 0 > 0, λji (q; τ )

is differentiable at (q;0) and its partial derivatives are as in Appendix 2.

Proof : Let τ (π) be a continuously differentiable function from (−1, 1) to
(−ρ, ρ)nm such that τ (0) = 0. From Lemma A3-6, lim∆π→0

λji(q;0)−λji(q;τ (∆π))

∆π

exists and is equal to λji (q) in (A3.12), for all q in an open interval (F (c; 0) , 1 + ζ 0),

where ζ 0 > 0. In fact, otherwise there would exist a sequence (∆πk)k≥1 such

that the difference ratio would be bounded away from λji (q), which would

21λji (q;0) = q, with j 6= i, and γi (q;0) = F−1 (q; 0) −
R F−1(q;0)
c

F (w;0)n−1dw
qn−1 , obtained

from Lemma A3-1 (iv) for q in (F (c; 0) , 1], also describe the solution to (A3-4-A3-6) past
1 in

£
1, 1 + ζ0

¢
.
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contradict Lemma A3-5. Consequently,
¡
d
dπ
λji (q; τ (π))

¢
π=0

exists and is

equal to λji (q) in (A3.12), which is linear in τkl .

The differentiability with respect to τ at (q,0) then follows from Lemma

A5-322 in Appendix 5. Finally, the joint differentiability with respect to

(q, τ ) follows from Lemma A5-4 in Appendix 5. The formulas in Appendix

2 come from (A3.12). ||

Lemma A3-8:
(i) Let either Assumptions E and U or Assumption EU’ be satisfied. Let

also Assumptions D (i) and (iii) be satisfied and let F be extended over

(c, d+ ζ) × (−ρ, ρ)m, with ζ > 0, as in D (i). Then, for all 1 ≤ i 6=
j ≤ n and v in (c, d+ ζ), the function ϕji (v; τ ), the probability of winningQ
l 6=i

F
¡
ϕji (v; τ ) ; τ

j
¢
, the interim payoff Pi (v; τ ) =

R v
c

Q
l 6=i

F
¡
ϕji (v; τ ) ; τ

j
¢
dw,

and the bid function βi (v; τ ) are differentiable with respect to (v, τ ) at (v,0).
23

Also, the exante payoff Pi (τ ) =
R d
c
Pi (v; τ ) dFi (v; τ

i) is differentiable at

τ = 0. Moreover, the formulas in Appendix 2 for the partial derivatives

apply.

(ii) Let Assumptions E, U, and D be satisfied. Then, the expected to-

tal surplus
Pn

i=1

dR
c

vi

ÃQ
l 6=i

F
¡
ϕji (v; τ ) ; τ

j
¢!

dF (v; τ i) and the auctioneer’s

revenues RF (τ ) are differentiable at τ = 0.

Proof : (i) We first prove the differentiability of these functions. From
the definitions, we have ϕji (v; τ ) = F−1 (λji (F (v; τ i) ; τ ) ; τ j), for all v >

αi (c; τ ), and ϕji (v; τ ) = c, for v ≤ αi (c; τ ). The differentiability of

ϕji (v; τ ) and
Q
l 6=i

F
¡
ϕli (v; τ ) ; τ

l
¢
then follows from Lemmas A3-7, A3-5, and

A3-4.
22Since we obtain the first-order effects from differential equations at the symmetric

case, we need a local condition, such as Lemma A5-3, that is sufficient for differentiability.
We could not apply more familiar global conditions like, for example, the existence and
continuity of the partial derivatives everywhere in a neighborhood of the symmetric case.
23Obviously, Pi (v; τ ) and βi (v; τ ) are the interim payoff and bid function only for v in

(c, d].

34



For all continuously differentiable function τ (π) from (−1, 1) to (−ρ, ρ)nm
such that τ (0) = 0, the integral in the equality (A3.15) below is differen-

tiable with respect to π at π = 0 because (by applying Lebesgue theorem of

dominated convergence, for example) the function inside the integral is dif-

ferentiable with respect to τ at τ = 0 and because, as in the proof of Lemma

A3-3, Assumptions D (i, iii) imply that the ratio

¯̄̄̄
¯F (v;0)n−1−Ql6=iF(ϕli(v;τ );τ l)

¯̄̄̄
¯

|τ | is

bounded:

Pi (v; τ (0)) =

Z v

l

Y
l 6=i

F
¡
ϕji (v; τ (0)) ; τ

j (0)
¢
dw. (A3.15)

Moreover, differentiation may be taken under the integral sign, and, from the

linearity of the integral,
¡
d
dπ
Pi (v; τ (π))

¢
π=0

is a linear function of d
dπ
τ lk (0),

1 ≤ l ≤ n, 1 ≤ k ≤ m. The differentiability of Pi (v; τ ) and βi (v; τ ) then

follows from Lemma A5-3 in Appendix 5 and Lemma A3-1 (iii).

Integration by parts gives:

Pi (τ ) =

Z d

c

Y
l 6=i

F
¡
ϕli (v; τ ) ; τ

l
¢ ¡
1− F

¡
v; τ i

¢¢
dv. (A3.16)

The ratio

(Q
l 6=i

F
¡
ϕli (v; τ ) ; τ

l
¢
(1− F (v; τ i))− F (v; 0)n−1 (1− F (v; 0))

)
/ |τ |

can be broken down as the sum of (1− F (v; τ i))

(Q
l 6=i

F
¡
ϕli (v; τ ) ; τ

l
¢− F (v; 0)n−1

)
/ |τ |

and F (v; 0)n−1 (F (v; 0)− F (v; τ i)) / |τ |. Assumption D (iii) immediately

implies that the absolute value of the second term is bounded over (c, d] ×
(−ρ00, ρ00)nm. Proceeding as in the proof of Lemma A3-3, it also implies that
the absolute value of the first term is bounded. As in the previous paragraph,

the differentiability of Pi (τ ) at τ = 0 then follows from the differentiability

of
Q
l 6=i

F
¡
ϕli (v; τ ) ; τ

l
¢
(1− F (v; τ i)).

35



We next prove the formulas in Appendix 2. From the definition of

ϕji (v; τ ), Lemma A3-5, and
∂
∂q
λji (F (v; 0) ;0) = 1, we have:

µ
d

dπ
ϕji (v; τ (π))

¶
π=0

=
1

f (v; 0)

⎧⎨⎩
¡
d
dπ
λji (F (v; τ

i (π)) ; τ (π))
¢
π=0

+
mP
l=1

∂
∂τ l

F−1 (q; τ)
¡
d
dπ
τ il (0)− d

dπ
τ jl (0)

¢
⎫⎬⎭ .(A3.17)

Formulas for the partial derivatives of ϕji (v; τ ) can then be obtained by

substituting in the equality above its value from Lemma A3-7 and (A2.1)

(Appendix 2) to
¡
d
dπ
λji (F (v; τ

i (π)) ; τ (π))
¢
π=0
.

As we now show, under the assumption that ∂
∂τ l

F (v; 0) is differentiable

with respect to v, for all 1 ≤ l ≤ m, it is possible to simplify these formu-

las somewhat. Using the equality ∂
∂τ l

F (F−1 (p; 0) ; 0) /f (F−1 (p; 0) ; 0) =
∂
∂τ l
lnF (F−1 (p; 0) ; 0) and changing the variable to w = F−1 (p; 0), we see

that (A2.1) in Appendix 2 is equal to the product of q
³R F−1(q;0)

c
F (w; 0)n−1 dw

´n−1
and the integral below:Z d

F−1(q;0)
(−1) ∂

∂τ l
lnF (w; 0) d

1¡R w
c
F (x; 0)n−1 dx

¢n−1 .
Integrating by parts and using ∂

∂τ l
lnF (d; 0) = 0, we find the following equiv-

alent expression for ∂

∂τjl
λji (q;0):

∂

∂τ jl
λji (q;0) =

∂

∂τ l
F
¡
F−1 (q; 0) ; 0

¢
+q

ÃZ F−1(q;0)

c

F (w; 0)n−1 dw

!n−1 Z d

F−1(q;0)

d ∂
∂τ l
lnF (w; 0)¡R w

c
F (x; 0)n−1 dx

¢n−1 .
Substituting these new expressions in (A3.17), we find the formulas for the

partial derivatives of ϕji (v; τ ) in Appendix 2.

Differentiating, which, as we proved above, we may do, under the integral

signs in (A3.7), (A3.15), and (A3.16) and using the expressions for the par-
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tial derivatives of ϕji, we find the expressions in Appendix 2 for the partial

derivatives of the bid functions and the interim and exante payoffs.

(ii) Since RF (τ ) is the difference between the expected total surplus and

the sum
nP
i=1

Pi (τ ) of the bidder’s payoffs, which is differentiable from (i), we

will have proved the differentiability of the total surplus and RF (τ ) once

we prove the differentiability of
dR
c

v

ÃQ
l 6=i

F
¡
ϕji (v; τ ) ; τ

j
¢!

∂
∂v
F (v; τ i) dv, for

all 1 ≤ i ≤ n. Let τ be a continuously differentiable function from

(−1, 1) to (−min (ρ0, ρ00) ,max (ρ0, ρ00))nm, where ρ0 and ρ00 are from Assump-
tions D (ii,iii), such that τ (0) = 0. Let N be an upper bound of the

absolute values of its partial derivatives, so that |τ (π)|
|π| ≤ N . The ratio(

dR
c

v

ÃQ
l 6=i

F
¡
ϕji (v; τ (π)) ; τ

j (π)
¢!

∂
∂v
F (v; τ i (π)) dv −

dR
c

vF (v; 0)n−1 dF (v; 0)

)
/π

is equal to the sum of the two following integrals:
dR
c

v

Q
l6=i

F(ϕji(v;τ (π));τj(π))−F (v;0)n−1

π
∂
∂v
F (v; τ i (π)) dv,

dR
c

vF (v; 0)n−1
∂
∂v

F(v;τ i(π))− ∂
∂v

F (v;0)

π
dv.

From Assumptions D (ii, iii), the absolute value of the function inside the

first integral is not larger than the integrable function vNMI (v), where

M is an upper bound of

¯̄̄̄
¯ Ql6=iF(ϕji(v;τ );τj)−F (v;0)n−1

¯̄̄̄
¯

|τ | , for all (v; τ ) in (c, d] ×
(−min (ρ0, ρ00) ,max (ρ0, ρ00))nm, and I is the integrable function from As-

sumption D (ii). The existence of the limit of
dR
c

v

Q
l6=i

F(ϕji(v;τ (π));τj(π))−F (v;0)n−1

π
∂
∂v
F (v; τ i (π)) dv

then follows from the differentiability of
Q
l 6=i

F
¡
ϕji (v; τ ) ; τ

j
¢
, the continuity

of ∂
∂v
F (v; τ i), and, for example, the Lebesgue Theorem of dominated con-

vergence. Moreover, from the linearity of the integral, it is equal to a linear

function of d
dπ
τ lk (0), 1 ≤ l ≤ n, 1 ≤ k ≤ m.

The limit of the second integral exists because
dR
c

vF (v; 0)n−1 ∂
∂v
F (v; τ i (π)) dv

is differentiable at π = 0. In fact, integrating by parts, it is equal to

d −
dR
c

F (v; τ i (π)) d
¡
vF (v; 0)n−1

¢
. Assumptions D (ii, iii), as in the para-
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graph above, and the continuous differentiability of τ i (π) imply that the ab-

solute value |F (v;0)−F(v;τ
i)|

|τ (π)|
|τ (π)|
|π|

∂
∂v

¡
vF (v; 0)n−1

¢
of the ratio in the definition

of the derivative is bounded by an integrable function of v only. Conse-

quently,
dR
c

vF (v; 0)n−1 ∂
∂v
F (v; τ i (π)) dv is differentiable at π = 0, its deriva-

tive is equal to
dR
c

£
d
dπ
F (v; τ i (π))

¤
π=0

d
¡
vF (v; 0)n−1

¢
and, from the linearity

of the integral, is a linear function of d
dπ
τ lk (0), 1 ≤ l ≤ n, 1 ≤ k ≤ m. The

differentiability of RF (τ ) at τ = 0 then follows from Lemma A5-3. The

differentiability of RS (τ ) follows from Proposition 2. The rest of (ii) then

follows from Proposition 1 (Section 2). ||

Proof of Theorem 1’: Theorem 1’ (i) follows from Lemma A3-1 (i).

Lemma A3-8 (ii) and (iii) imply Theorem 1’ (ii) and (iii). ||

Appendix 4

Corollary 1’:
(i) For m = 1, let F (v; τ) satisfy Assumption D and either Assumptions

E and U or Assumption EU’. Let F (v; τ) be strictly increasing in τ for the

conditional stochastic dominance and let ∂2

∂v∂τ
lnF (v; 0) and ∂2

∂τ∂v
lnF (v; 0)

exist and be equal, for all v in (c, d]. If the inequality (18) holds true, then

we have ∂
∂τ i

Pi (0) < 0, for all 1 ≤ i ≤ n.

(ii) Let F be a cumulative distribution function that is absolutely con-

tinuous over [c, d] and is differentiable with a derivative f locally bounded

away from zero over (c, d] and such that (ii.1) or (ii.2) below holds true:

(ii.1) F has an atom at c such that F (c) < n−1
2n−1 and the continuous

extension of f exists and is strictly positive at c;

(ii.2) F is atomless, strictly log-concave over an interval (c, c+ ε)

with ε > 0, and such that (v − c) f (v) tends towards zero as v tends towards

c.
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Then, there exists F (v; τ) that satisfies Assumption D and either As-

sumptions E and U or Assumption EU’, is increasing in τ for the conditional

stochastic dominance, and is such that F (v; 0) = F (v) and ∂
∂τ i

Pi (0) < 0,

for all 1 ≤ i ≤ n.

Proof : From the formulas in Appendix 2, ∂
∂τ i

Pi (0) is equal to the

sum of the following terms: n−1
n

R d
c

R v
c
F (z; 0)n−1 ∂

∂τ
lnF (z; 0) dzdF (v; 0),

1
n

R d
c

∂
∂τ
lnF (v; 0)

R v
c
F (z; 0) dzdF (v; 0),

R d
c
(∂ ln)2

∂τ∂v
F (v; 0)

¡R v
c
F (w; 0)n−1 dw

¢
dF (v; 0),

and

−n−1
n

R d
c

µR d
v

d ∂
∂τ
lnF (y;0)

(
R y
c F (z;0)n−1dz)

n−1

¶¡R v
c
F (z; 0)n−1 dz

¢n
dF (v; 0). Since the last

term is nonnegative, ∂
∂τ i

Pi (0) is not larger than the sum of the first three

terms. Through integration by parts, the first and third terms are equal to
n−1
n

R d
c
F (v; 0)n−1 (1− F (v; 0)) ∂

∂τ
lnF (v; 0) dv and− R d

c
F (v; 0)n−1 ∂

∂τ
lnF (v; 0) dv−R d

c
∂
∂τ
lnF (v; 0)

¡R v
c
F (w; 0)n−1 dw

¢
dF (v; 0) (for the third term, we use the

equality F (v;0)
f(v;0)

∂
∂v

∂
∂τ
lnF (v; 0) = (∂ ln)2

∂τ∂v
F (v; 0)). Substituting their values to

these terms gives the inequality ∂
∂τ i

Pi (0) ≤ n−1
n

R d
c
F (v; 0)n−1K (v) ∂

∂τ
lnF (v; 0) dv,

where K is as defined in (i). The first statement of Corollary 1’ then follows.

Under either of the assumptions (ii.1) and (ii.2), limv→c

³R v
c F (w)n−1dw
F (v)n−1

´
f (v) =

limv→c

³R v
c F (w)n−1dw
(v−c)F (v)n−1

´
(v − c) f (v) = 0. Consequently, limv→cK (v) = 1 −

2n−1
n−1 F (c) < 0. There thus exists a strictly log-concave continuously differen-

tiable function ζ (v) (close to zero over (c+ δ, d), where δ is small and strictly

positive) such that ζ (d) = 0, ζ (v) < 0, for all v in [c, d), the derivative d
dv
ζ (w)

is strictly positive and bounded over [c, d], and
R d
c
F (v; 0)n−1K (v) ζ (v) dv <

0. It suffices then to define F (v; τ) over (c, d] × (−ρ, ρ) by the equality
F (v; τ) = F (v) exp

n
J
ρL
ζ (v) τ

o
, where J is a strictly positive lower bound

of d
dv
lnF (w) (that such a bound exists follows from f (c) , F (c) > 0 under

(ii.1) and from the log-concavity of F over (c, c+ ε) under (ii.2)) and L an

upper bound of d
dv
ζ (w) over [c, d]. ||

Corollary 2’: Same statement as Corollary 2 (Section 4), except that

F (v; τ) may satisfy Assumption EU’ instead of Assumptions E and U.
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Proof : Corollary 2’ is an immediate consequence of the following equal-
ity, obtained from the formulas in Appendix 2:

∂

∂τ j
APi (0)− ∂

∂τ i
APi (0)

=

Z d

c

Ã
1− (∂ ln)

2

∂τ∂v
F (v; 0)

!µZ v

c

F (w; 0)n−1 dw
¶
dF (v; 0)

+

Z d

c

ÃZ d

v

d∂ ln
∂τ
F (y; 0)¡R y

c
F (z; 0)n−1 dz

¢n−1
!µZ v

c

F (z; 0)n−1 dz
¶n

dF (v; 0) .

||

Appendix 5

Lemma A5-1: Let (πk, ηk)k≥1 be a sequence in R ×Rn converging to-

wards (π, η) and such that πk 6= π, for all k ≥ 1. If limk→+∞
ηk−η
πk−π exists

and is finite, then there exists a subsequence
¡
πkm , ηkm

¢
m≥1 and a continu-

ously differentiable function eη from (π − 1, π + 1) to Rn, such that eη (π) = η

and eη (πkm) = ηkm, for all m ≥ 1 such that πkm ∈ (π − 1, π + 1).

Proof : By considering a subsequence if necessary, we may assume that
(πk)k≥1 is strictly monotonic. Assume, for example, that it is strictly de-

creasing (the proof is similar when it is strictly increasing). We first prove

the lemma for (π, η) = 0. Let χ be equal to limk→+∞
ηk
πk
. Let k1 be a value

of the index such that πk1 ≤ 1 and
¯̄̄
χ− ηk1

πk1

¯̄̄
≤ 1. Assume km has been

defined and
¯̄̄
χ− ηkm

πkm

¯̄̄
≤ 1/m. Then km+1 is a value of the index such that

km+1 > km,
¯̄̄
χ− ηkm+1

πkm+1

¯̄̄
≤ 1/ (m+ 1), and

¯̄̄
χ− ηkm−ηkm+1

πkm−πkm+1

¯̄̄
≤ 2/m. The

last requirement can be satisfied because (πk, ηk)k≥1 tends towards 0 and¯̄̄
χ− ηkm

πkm

¯̄̄
≤ 1/m.

By extracting a subsequence as in the previous paragraph if necessary, we

may assume that (πk, ηk)k≥1 is such that
¯̄̄
χ− ηk

πk

¯̄̄
≤ 1/k and

¯̄̄
χ− ηk−ηk+1

πk−πk+1

¯̄̄
≤
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2/k, for all k ≥ 1. Consider a step function σ from (−1, 1) to Rn such

that σ (π) =
ηk−ηk+1
πk−πk+1 , for all π and k such that π ∈ (πk+1, πk). Then

approximate σ by a continuous function ζ from (−1, 1) to Rn such thatR πk
πk+1

(ζ (π)− σ (π)) dπ = 0, for all k ≥ 1. Such a function exists. In

fact, it suffices to consider a sequence (ζm)m≥1 of functions such that, for

all m ≥ 1: ζm (π) = χ, for all π in [0, πm]; ζm is continuous over (πm, 1);

ζm (πk) =
1
2

³
ηk−ηk+1
πk−πk+1 +

ηk−1−ηk
πk−1−πk

´
, for all m > k > 1;

¯̄̄
ζm (π)− ηk−ηk+1

πk−πk+1

¯̄̄
≤

1
2

¡
2
k
+ 2

k+1

¢
= 1

k
+ 1

k+1
, for all π and k < m such that π ∈ [πk+1, πk];R πk

πk+1
(ζm (π)− σ (π)) dπ = 0, for allm > k ≥ 1; ζm is odd, that is, ζm (−π) =

ζm (π), for all π; ζm+1 is equal to ζm over (πm+1, 1). The sequence (ζm)m≥1
is then a Cauchy sequence for the norm of the uniform convergence. As it

can be easily shown, its limit ζ is continuous and satisfies our requirements.

A function eη can then be simply defined as follows: eη (π) = η1−
R π1
π

ζ (π) dπ.

We have proved the lemma for (π, η) = 0.

In the general case, it suffices to obtain the function eη for the sequence
(πk − π, ηk − η)k≥1 and to define the new function eη (π − π) + η. ||

Lemma A5-2: Consider a system of differential equations d
dt
y (t) =

h (t, y, π) and an initial condition y (t1) = η (π) that depend on a parameter π

and that are defined over an open subset O of Rn+2, where n is the dimension

of y. Assume that h is a continuous function from O to Rn such that ∂
∂yi

h,

1 ≤ i ≤ n, and ∂
∂π
h exist and are continuous over O. Let (πk)k≥1 be a

sequence in R such that (t1, η (πk) , πk)k≥1 is a sequence in O that converges

towards a point (t1, η, π) in O. Assume also that limk→+∞
η(πk)−η
πk−π exists and

is finite. Let χ be this limit. Let y (., π) be the solution of the differential

system with the initial condition as a function of the parameter π.

Then limk→+∞
y(t,πk)−y(t,π)

πk−π exists, for all t in the maximal definition in-

terval of the solution y (., π) and is equal to the solution ρ of the linear differ-

ential system d
dt
ρ (t) =

Pn
i=1

∂
∂yi

h (t, y (t, π) , π) ρi (t)+
∂
∂π
h (t, y (t, π) , π) with

initial condition ρ (t1) = χ.
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Proof : The conclusion of the lemma will be proved if we prove it for all
strictly monotonic subsequence of (πk)k≥1. We may thus assume that (πk)k≥1
is strictly monotonic. Through the change of variables y = η (π)+z, the ini-

tial system and initial condition are equivalent to d
dt
z (t) = h (t, η (π) + z, π)

and z (t1) = 0. From Lemma A5-1, there exists a continuously differ-

entiable function eη over a neighborhood of π that coincides with η over

{πk|k ≥ 1}∪{π}. From the equality limk→+∞
η(πk)−η
πk−π = χ, we have d

dπ
eη (π) =

χ. The lemma then follows from the application of the standard theorems

of the theory of ordinary differential equations about the differentiability of

the solution with respect to a parameter to the system d
dt
z (t) = g (t, z, π),

where g (t, z, π) = h (t,eη (π) + z, π), with initial condition z (t1) = 0. ||

Lemma A5-3: Let f be a function from an open set O of Rn to R

and let ω be an element of O. Assume that f is continuous at ω and

that its partial derivatives ∂
∂τ i

f (ω), 1 ≤ i ≤ n, exist. Assume also that

f ◦ τ is differentiable at 0 and that d
dπ
f ◦ τ (0) = Pn

i=1
∂
∂τ i

f (ω) d
dπ
τ i (0),

for all continuously differentiable function τ (π) from (−1, 1) to O such that

τ (0) = ω. Then, f is differentiable at ω.

Proof : Suppose that f is not differentiable at ω. Then, there exists

� > 0 and a sequence
¡
τk
¢
k≥1 converging towards ω such that τ

k 6= ω, for all

k, and ¯̄̄̄
¯f
¡
τk
¢− f (ω)

|τk − ω| −
nX
i=1

∂

∂τ i
f (ω)

¡
τki − ωi

¢
|τk − ω|

¯̄̄̄
¯ > �, (A5.1)

for all 1 ≤ k ≤ n. By extracting a subsequence, if necessary, we may assume

that
¡¯̄
τk − ω

¯̄¢
k≥1 is strictly decreasing. Since the sequence

µ
τk−ω
|τk−ω|

¶
k≥1

is

bounded, it admits a convergent subsequence. We may thus assume that

this sequence itself is convergent. Let λ be its limit. Since every term of

the sequence has a unit norm, this is also the case of the limit and we have

|λ| = 1.
Applying Lemma A5-1 to (πk)k≥1 =

¡¯̄
τk − ω

¯̄¢
k≥1, π = 0,

¡
ηk
¢
k≥1 =
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¡
τk
¢
k≥1, and η = ω, we obtain the existence of a continuously differentiable

function eτ from (−1, 1) to Rn such that eτ (0) = ω and eτ ¡¯̄τk − ω
¯̄¢
= τk,

for all k ≥ 1 such that ¯̄τk − ω
¯̄
< 1. Since limk→+∞ τk−ω

|τk−ω| = χ, we have
d
dπ
eτ (0) = χ. Then, from the assumptions of the lemma, d

dπ
f ◦τ (0) exists and

is equal to
Pn

i=1
∂
∂τ i

f (ω)χi. Consequently, the limit of the L.H.S. of (A5.1),

for k tending towards infinity, exists and is equal to 0. This contradicts

(A5.1) and the lemma is proved. ||

Lemma A5-4: Let f be a function from an open set O in R×Rn to R

and let (u, ω) be an element of O. Assume that the function f (u, .) from

{τ ∈ Rn| (u, τ) ∈ O} to R is differentiable at ω and that ∂
∂u
f exists in O and

is continuous at (u, ω). Then, f is differentiable at (u, ω).

Proof : We will have proved the lemma if we prove that the limit of the
ratio below for (u, τ) tending towards (u, ω) exists and is equal to 0:¯̄̄

f (u, τ)− f (u, ω)− ∂
∂u
f (u, ω) (u− u)−Pn

i=1
∂
∂τ i

f (u, ω) (τ i − ωi)
¯̄̄

|(u− u, τ − ω)| .

However, this ratio is not larger than (A5.2) below:¯̄̄̄
f (u, τ)− f (u, τ)

u− u
− ∂

∂u
f (u, ω)

¯̄̄̄ |u− u|
|(u− u, τ − ω)| +¯̄̄

f (u, τ)−Pn
i=1

∂
∂τ i

f (u, ω) (τ i − ωi)
¯̄̄

|τ − ω|
|τ − ω|

|(u− u, τ − ω)| . (A5.2)

Obviously, the two factors |u− u| / |(u− u, τ − ω)| and |τ − ω| / |(u− u, τ − ω)|
are not larger 1. From the mean value theorem, f(u,τ)−f(u,τ)

u−u = ∂
∂u
f (u0, ω),

where u0 lies strictly between u and u. As (u, τ) tends towards (u, ω), (u0, τ)

also tends towards (u, ω) and, from the continuity of ∂
∂u
f at (u, ω), ∂

∂u
f (u0, τ)

tends towards ∂
∂u
f (u, ω). Consequently, the first term in (A5.2) tends to-

wards 0. From the differentiability (with respect to τ) of f (u, .) at ω, the

43



second term also tends towards 0 and the lemma is proved. ||
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