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Continuity of the First Price Auction Nash Equilibrium Correspondence

1.Introduction

One item is being sold at auction to n bidders whose valuations are private and independently

distributed.  We consider the first price auction, where the highest bidder is awarded the item and

pays his bid.  This auction procedure is considerably more difficult to study than the English

ascending oral bid auction which is equivalent (in this “Independent Private Value" or IPV

model) to the second price or Vickrey auction, where the highest bidder is still the winner but

pays the second highest bid.  For the first price auction, it is only in the symmetric case where the

bidders' valuations are identically distributed that there exists a general mathematical formula for

the Bayesian equilibrium strategies.  Nevertheless, analytical results pertaining to the general

(asymmetric) case have started to emerge in the literature (Athey 1997, Griesmer  1967,et al

Lebrun 1997, 1998, Marshall  1994, Maskin and Riley 1996 a and b, 1998, Plum 1989,et al

Thomas 1997, Vickrey 1961, Whaerer 1997).  Because of its complexity, authors have also

searched to gain insights into the asymmetric case by computing numerical estimates of the

equilibria for some particular probability distributions of the valuations (Athey 1997, Dalkir et al

1998, Li and Riley 1997, Marshal  1994, Maskin and Riley 1998).et al

Obviously, the more robust the theoretical results are to deviations from the assumptions

on the valuation distributions the more worthwhile they are.  It is thus natural to ask whether

some results which are known to hold true for particular n-tuples F , ,F  of valuationÐ á Ñ" 8

distributions would still hold after slight perturbations of these n-tuples.  For example, in Lebrun

(1998) it is proved that if there are only two different distributions G  and G  in the n-tuple of" #

valuation distributions, that is, if there exists m such that F G , for 1 i m, and F G ,3 " 4 #œ Ÿ Ÿ œ

for m 1 j n, then if G , for example, is replaced by G  such that, by using the same Ÿ Ÿ
µ

" "

notation for the cumulative distribution functions, d/dv G v G v   0, for all v, then theµ
Ð ÑÎ Ð Ñ " "



new equilibrium bid probability distributions will strictly (first order) stochastically dominate the

old ones.  As a particular consequence, the auctioneer's expected revenues will increase.  An

assumption for this result is that G  dominates G  in a strong sense (it is equivalent to the strictµ
" "

first order stochastic dominance between the conditionals over all intervals of the form c,e , withÒ Ó

e c and where c is the common minimum of the supports of G  and G ).  Will the auctioneer's
µ

" "

expected revenues still increase if G  is replaced by a distribution H  which without satisfying" "

this strong assumption is “close enough", in the sense of the weak topology, to G ? Since theµ
"

auctioneer's revenues is a continuous function of the bids (the maximum), the answer to this

question is yes if the Nash equilibrium of the first price auction depends continuously, for the

weak topology, on the valuation distributions.  Here, we show that this is indeed the case.

Clearly, the numerical estimates would be of very little use without this continuity of the

Nash equilibrium.  In fact, they would be relevant only for the particular and more or less

arbitrary choice of valuation distributions and would be of no value even for small perturbations

away from these distributions.

It is known that a Nash equilibrium of the standard first price auction does not always

exist.  Changing the rules regarding the breaking of the ties allows to recover the existence of an

equilibrium.  Without access to the bidders' private information and thus using only the

information they willingly provide, this can be done in several ways that we present in Section 2.

They all give equilibria that would also result if the tie breaking rule directly used the bidders'

valuations by allocating the item to the bidder involved in the tie with the highest valuation.  In

Section 3, we investigate the relationships among this “technical" variant (not an auction, strictly

speaking) and all the other variants, where the valuations stay private.  In particular, one of these

other variants is shown to be equivalent to the technical variant. In Section 4, we prove the upper

hemicontinuity of the Nash equilibrium correspondence of the technical variant and apply it to

prove the existence of an equilibrium for one of the other variants.  The upper hemicontinuity

immediately implies the continuity when the correspondence is single-valued.  In Section 5, we



gather assumptions under which the correspondence is single valued and thus continuous.  As an

example of application, we use this continuity to prove that the property of “monotonicity",

alluded to above,  of the equilibrium bid distributions with respect to the valuation distributions

when there are only two different valuation distributions does not extend to n-tuples of valuation

distributions with more than two different distributions even under all the regularity assumptions

of Lebrun (1998).  Section 6 is the conclusion.  Details of te proofs can be found in Appendices 1

to 3.

2. Several First Price Auction Games

We work within the model described in Lebrun (1996).  An item is being sold in an auction with

n bidders.  We denote bidder i's valuation of the item by v  .  The n-tuple of valuations v , ,3 "Ð á

v  is  chosen randomly according to an n-tuple of independent probability measures F , ,8 "Ñ Ð á

F .  Only bidder i is informed of v  and submits  a bid at least as large as the minimum8 3
"Ñ

allowable bid  c .  The bidders are assumed to be risk-neutral.#

As in Lebrun (1996, Assumption A), we assume that the support of F  is compact and3

included in c,L], where L is strictly larger than c.  Since at any equilibrium we might defineÒ

bidders will not bid above L, for the sake of simplicity we introduce the rule that every submitted

bid must not be larger than  L .  We denote by c,L  the set of probability measures over$ ŒÐÒ ÓÑ

Ò Ó Ð á Ñ − ÐÒ ÓÑc,L .  We thus have F , ,F   c,L ." 8
8Œ

We consider the first price auction game FPA  ,P  as defined in Lebrun (1996).  Itœ Ð Ñf

is the standard first price auction game where the highest bidder wins the item and pays his bid,

the other bidders do not pay anything, and ties are broken by a fair lottery.  A strategy  of53

bidder i is a probability measure over c,L c,L c,L  such that its marginal distributionÒ Ó œ Ò Ó ‚ Ò Ó#
" #

5 53" " 3 3# 3 over the first component space c,L  is equal to F .  A conditional distribution . v  overÒ Ó Ð ± Ñ

Ò Ó Ò Óc,L  with respect to v  in c,L  is the probability distribution of the bid b  when bidder i's# 3 " 3



valuation is v .  We denote the set of strategies  by  and the product  by .3 3 3 " 85 f f f f‚á ‚

Consistent with the assumption of risk-neutrality, the value P , ,  of the payoff function3 " 8Ð á Ñ5 5

of bidder i at a n-tuple of strategies , ,  is the expected value of p v ,b , b  withÐ á Ñ Ð á Ñ5 5" 8 3 3 " 8

respect to the measure  over c,L c,L .  The value p v ,b , b  is bidder5 5" 8 " # 3 3 " 8
8Œá Œ ÐÒ Ó ‚ Ò Ó Ñ Ð á Ñ

i's expected payoff when his valuation is v  and the submitted bids are b , b .  It is equal to 03 " 8Ð á Ñ

if b    max b  and to , where #H b , b  is the number of highest bidders, if b3 5 " 8 3


Ð á Ñ Ð á Ñ
" Ÿ 5 Ÿ 8

v b
#H b , b

3 3

" 8

œ Ð á Ñ
" Ÿ 5 Ÿ 8

  max b .  We denote by P the function P , ,P .5 " 8

We also consider several variants of FPA  ,P  which differ according to the wayœ Ð Ñf

ties are broken.  The game FPA  ,P  is the first price auction game where bidder i is asked
œ Ð Ñ


`

to send a message m   c,L  together with the bid b  he submits.  In case of a tie between3 3− Ò Ó

several highest bidders, the highest bidder who has sent the highest message among the highest

bidders wins the auction.  If there are several such highest bidders, the winner is chosen among

these bidders according to a fair lottery.  A strategy of bidder i is a probability measure over

Ò Ó Ò Ó ‚ Ò Ó ‚ Ò Óc,L = c,L c,L c,L  whose marginal distribution over the first component space is$
" # $

equal to F .  The third component space is the message space.  We denote the set of strategies of3

bidder i by , the payoff function of bidder i by P , the product  by , and` ` ` `3 3 " 8


‚á ‚

the function P , ,P  by P .  The complete formal definition of this game can be found inÐ á Ñ
  

" 8

Lebrun (1996).

The game FPA'  ',P'  is the game where as in ,P  each bidder has to send aœ Ð Ñ Ð Ñ


f `

message along with his bid and the winner of the auction is chosen among the highest bidders

who have sent the highest message among the highest bidders.  However, in this game the

message simply belongs to 0,1 .  In a sense, a message equal to 1 means that the bidder wants toÖ ×

stay in the auction in case of a tie and a message 0 means that the bidder is ready to drop out in

case of a tie.   A strategy of bidder i is now a probability measure over

Ò Ó ‚ Ö × Ò Ó ‚ Ò Ó ‚ Ö ×c,L 0,1 = c,L c,L 0,1  whose marginal distribution over the first component#
" #



space is equal to F .  The third component space is again the message space.  A formal definition3

of FPA' ',P'  would proceed along the lines of the definition of FPA ,P .œ Ð Ñ œ Ð Ñ
 

f `

The game FPA ,P  is the variant defined in Lebrun (1996) where bidders onlyµ
œ Ð Ñ

µ
f

submit bids, as in FPA ,P , and where the winner of the auction is chosen among the highestœ Ð Ñf

bidders with the highest valuations among the highest bidders.  Again, in case of several such

bidders a fair lottery determines the winner.  Bidder i's payoff function p v , ,v ,b , ,bµ Ð á á Ñ3 " 8 " 8

whose expectation is equal to P  is now a function of the whole vectors of valuations and bids.µ
3

As noticed in Lebrun (1996), strictly speaking FPA ,P  cannot be implemented as anµ
œ Ð Ñ

µ
f

auction since determining the winner requires information which is private to the bidders.  As in

Lebrun (1996), FPA ,P  is a technical tool which is useful in the proof and presentation ofµ
œ Ð Ñ

µ
f

the results.  Moreover, we will see in Theorem 1 in the next section that, as far the as the

valuation-bid distributions are concerned, its set of equilibria and the set of equilibria of the first

price auction game FPA with the large set of messages coincide, for all n-tuples of valuation

distributions.

In order to make explicit the dependency of all these games on the valuation

distributions, we sometimes write F , , F  as an argument.  For example, FPA F , , FÐ á Ñ Ð á Ñ" 8 " 8

œ Ð Ð á Ñ Ñ œ Ð Ñ F , , F ,P  is the standard first price auction game FPA ,P  when the valuationf f" 8

distributions are F , , F .  Notice that the payoff functions P, P , P', and P  of all gamesÐ á Ñ
 µ

" 8

described above take their values in the compact c L,L c .Ò   Ó8

Let   ,  be one of the first price auction games defined above, that is, FPA,> D C >œ Ð Ñ œ

FPA, FPA', or FPA.  The Nash equilibrium correspondence of the game  is a correspondence µ
>

from c,L  to the set of n-tuples of strategies, which is included in c,L  in the cases ofŒ ŒÐÒ ÓÑ ÐÒ Ó Ñ8 # 8

FPA and FPA, c,L  in the case FPA, and c,L 0,1  in the case FPA'.  Its value atµ
ÐÒ Ó Ñ ÐÒ Ó ‚ Ö ×Ñ


Œ Œ$ 8 # 8

Ð á Ñ Ð á ÑF , , F  is the (possibly empty) set of the Nash equilibria of F , , F , that is, the game" 8 " 8>

> when the valuation distributions are F , , F .  All measure spaces are endowed with theÐ á Ñ" 8

weak topology and all products with the product topology.  We denote the Nash equilibrium



correspondence of FPA by , of FPA' by ', of FPA by , and of FPA by  and their graphsa a a a
µ µ  

by gr , gr ', gr , and , respectively.  Moreover, we denote the images of thesea a a a
µ 

correspondences by im , im ', im , and im .  For example, gr  is equal to  F , ,F ,a a a a a .
µ 

Ö Ð á Ñ" 8

± Ð á Ñ − ÐÒ Ó Ñ − Ð á Ñ × Ö ± F , ,F   c,L  and   F , ,F   and im  is equal to    there exists" 8 " 8
# 8Œ . a a .

Ð á Ñ − ÐÒ Ó Ñ − Ð á Ñ ×F , ,F   c,L  such that   F , ,F  ." 8 " 8
# 8Œ . a

3.Relationships Between the First Price Auction Games.

Lebrun (1996) showed that any equilibrium of the technical variant FPA can be extended to anµ

equilibrium of the first price auction FPA with the large set c,L  of messages, that is,  
Ò Ó ©

µ
a

marg  or F , ,F   marg F , ,F      c,L   there exists  in‰ Ð á Ñ © ‰ Ð á Ñ œ Ö − ÐÒ Ó Ñ ±
 µ a a a . Œ ." 8 " 8

# 8

a . . Œ


Ð á Ñ œ × Ð á Ñ ÐÒ ÓÑF , ,F  such that marg  , for all F , ,F  in c,L , where marg is the" 8 " 8
8

function whose value at a measure in c,L  is its marginal distribution over the first twoŒÐÒ Ó Ñ$ 8

component spaces.  We also denote by marg the similar function whose domain is

ŒÐÒ Ó ‚ Ö ×Ñc,L 0,1 .  From statement (i) in Theorem 1 below the reverse inclusion holds true and# 8

a a
µ

œ ‰  µ  marg .  Thus, even if the technical variant FPA is not strictly speaking an auction all

its equilibria and only those can be implemented as the equilibria of the auction FPA whose rules

of allocation only makes use of the information supplied by the bidders.

Statement (i) also implies that any equilibrium of any of the first price auction games

determines an equilibrium of the technical variant FPA and thus of the variant FPA with the largeµ 

message space.  The first inclusion in (i) means that if  is an equilibrium of the standard first.

price auction FPA where only the bids are used to determine the winner, then it is also an

equilibrium of the first price auction FPA' where in addition to their bids bidders send messages

in 0,1  indicating their willingness to win a possible tie. Furthermore, statement (ii) implies thatÖ ×

the payoffs at an equilibrium of any game agree with the payoffs in the technical variant.  Notice

that the two inclusions in (i) are in general strict inclusions .%



The set  in (iii) is the set of probability distributions over c,L  whose supports lieh Ò Ó#

below the main diagonal, that is,      c,L   v,b c,L b v   1 .h . Œ .œ Ö − ÐÒ Ó Ñ ± ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ ×# #

Thus the value of the correspondence , for example, at an n-tuple F , ,F  is the seta h
µ

∩ Ð á Ñ8
" 8

a h .
µ

Ð á Ñ ∩ Ð á Ñ
µF , ,F  of Nash equilibria  of FPA F , ,F  such that every bidder almost surely" 8 " 8

8

submits bids not larger than his valuation.  From statement (iii) in Theorem 1 below, if we

consider only the equilibria where the bids are smaller than the valuations with probability one

then the two variants FPA, FPA, and the first price auction FPA' with the small set 0,1  ofµ 
Ö ×

messages give the same bid distributions.  From statement (iv) in Theorem 1, for all F , ,FÐ á Ñ" 8

such that c belongs to the support of all distributions F , ,F  bidders never bid strictly more" 8á

than their valuations with a strictly positive probability in any equilibrium of FPA F , , F ,µ
Ð á Ñ" 8

that is, F , , F  .a h
µ

Ð á Ñ ©" 8
8

Theorem 1:  According to our definitions, we have

(i)  marg '   marg ,a a a a© ‰ © œ ‰
µ 

(ii) P marg   P , P marg   P' , P   Pµ µ µ
‰ ± œ ± ‰ ± œ ± ± œ ±


37 37

  37 37 37 37a a a a a a' '

(iii)   marg 'a h a h
µ

∩ œ Ð ‰ Ñ ∩8 8

(iv)  marg ' , over the set F , ,F c,L c SuppF , for alla a h Œ
µ

œ Ð ‰ Ñ © ÖÐ á Ñ − ÐÒ ÓÑ ± −8 8
" 8 3

1 i n ,Ÿ Ÿ ×

Proof:  See Appendix 1.

The method of proof of Theorem 1 is similar to the method followed in Lebrun (1996).

First, we show (in Lemma 1) that for all equilibrium of any of our first price auction games, any

bidder involved in a tie at a bid b' with a strictly positive probability for valuations strictly smaller

than b' must have a zero probability of winning the tie.  If he did not, he would do better by



submitting a smaller bid.  Similarly, a bidder involved in a tie at b' with a strictly positive

probability for valuations strictly larger than b' must win the tie with probability 1.  If he did not,

he would do better by submitting a larger bid.

Next we prove (in Lemmas 1 and 2) that for all Nash equilibrium  of any of the first.

price auction games above, if there is a strictly positive probability of a tie it must be at the lower

extremity of the support of the highest bid, that is, at b max minSupp  and there exists a œ
3

.3#

bidder j which bids b  with a strictly positive probability for (a set of strictly positive probability

of) valuations not smaller than b  and such that any other bidder i which bids b  with a strictly 

positive probability does so for valuations not larger than b , that is,

marg b ,L b 0 and marg b ,L b  0, for all i j such that bidder i‰ ÐÒ Ó ‚ Ö ×Ñ  ‰ ÐÐ Ó ‚ Ö ×Ñ œ Á   . .4 3

submits b  with a strictly positive probability.  The existence of such a bidder j at any tie

(occurring with a strictly positive probability) follows easily from the observations in the

previous paragraph.  The only possible tie must be at b' b  otherwise there would be at leastœ

one bidder i as above, that is, bidding b' for valuations not larger than b', who would be better off

by submitting a smaller bid.  Moreover, we prove (in Lemma 3) that if there exists a bidder i

which submits b  with a strictly positive probability for a set of strictly positive probability of

valuations strictly smaller than b , there is a bidder j as above which almost surely does not

submit bids srtictly smaller than b .  In fact, if there did not exist such a bidder j  there would be a

strictly positive probability of a tie involving only bidders with valuations strictly smaller than b

and it would contradict the results of the previous paragraph.

In order to prove (Lemma 4) that marg  is an equilibrium of FPA if  is an equilibrium. .
µ

of any first price auction game , , we notice that the payoffs  and P  are equal at .  If> D C C .œ Ð Ñ
µ

there is a zero probability of a tie this follows from the equality of  (  is the expectation of )1 C 1

and p  outside ties.  If there is a strictly positive probability of a tie, it is of the type described inµ

the previous paragraph.  At the tie b , the payoffs are the same in  as in FPA since if bidder i is
µ

>

involved in the tie with a strictly positive probability for valuations strictly smaller than b  then



with probability one bidder j with a valuation strictly larger than b  is involved in the tie,

resulting in a probability 0 of winning the tie for bidder i in FPA and in  (see the initialµ
>

observations above about the probability of winning a tie depending on how the valuation

compares with the bid).  Similarly, if there is a bidder j which is involved in the tie with a strictly

larger valuation than b , with probability 1 all other bidders involved in the tie have valuations

not larger than b  and bidder j wins the tie with probability 1 in FPA and in .
µ

>

We then observe that if  was not a Nash equilibrium of FPA, there would exist a bidder.
µ

k and a strategy  in  such that P ( ,   P ( ( .  However, for all 0 we' f ' . . C . %5 5 5 5 5 5
µ µ µ

Ñ  Ñ œ Ñ 

can find a strategy  in  which gives bidder i against  a payoff not smaller than( f .5 5
µ

P ( ,  by more than , that is, such that P ( , P ( , , and such thatµ µ µ
Ñ Ñ   Ñ 5 5 5 5 5 5 5 5 5' . % ( . ' . %

( ,  involves  almost surely no tie.  For all bid b' where there is a strictly positive probability( .5 5Ñ

of a tie, it suffices to alter  slightly by submitting a smaller bid when bidder k's valuation is'5

smaller than b' and by submitting a larger bid when bidder k's valuation is larger.  Since p  and µ 1

agree outside ties, we have P ( , ( ,  and if we choose 0 small enough weµ
Ñ œ Ñ 5 5 5 5 5 5( . C ( . %

would have ( ,   ( , which is impossible since  is a equilibrium of .C ( . C . . >5 5 5 5Ñ  Ñ

Consequenlty, marg   and thus (the reverse inclusion was proved in Lebrun 1996)‰ ©
 µ
a a

a a a a a a
µ µ µ

œ ‰ © ‰ ©
 marg .  We also have proved the inclusions  and marg '   as well as

the equalities in (ii) stating that the equilibrium payoffs are the same in all games as in FPA.µ

In order to prove (iii), it now suffices to prove (Lemma 6) the inclusion   a h
µ

∩ ©8

marg '.  Let  be an equilibrium of FPA such that almost surely bidders submit bids not larger‰
µ

a .

than their valuations.  If there is a strictly positive probability of a tie then any bidder i j, as inÁ

the previous proof, which is involved in the tie with a strictly positive probability can bid b  with

a strictly positive probability only when his valuation is equal to b , that is,

. . f3ÐÐÒ Ó Ö ×Ñ ‚ Ö ×Ñ œ Á c,L \ b b  0, for all i j.  In this case if ' is the n-tuple of strategies in ' such

that marg ' , '  always sends the message 1, and '  always sends the message 0, for all. . . .œ 4 5

k j, we can show by using the same arguments as above that ' is a Nash equilibrium of FPA'.Á .



Because no bidder involved in the tie at b  has strictly smaller valuations than b  and thus since 

all bidders involved in the tie have their valuations equal to b  except possibly one, bidder j,

whose valuation can be strictly larger than b , the messages 0 and 1 suffice.  The same bidder,

bidder j, is the bidder who has to win the tie no matter who the other bidders involved in the ties

are.  It was because this was not the case in the three bidder example of footnote 4 that we needed

a larger message space .  If  implies a probability zero of a tie, any n-tuple ' of strategies in '& . . f

such that marg '  is a Nash equilibrium of FPA' .  We can similaryly prove (Lemma 5) the. .œ '

inclusion marg ' in (i).a a© ‰

Proving (iv) in Theorem 1 is now equivalent to proving  over the seta h
µ

© 8

ÖÐ á Ñ − ÐÒ ÓÑ ± − Ÿ Ÿ ×F , ,F c,L c SuppF , for all 1 i n .  First we notice (Lemma 7) that if  is" 8 3
8Œ .

a Nash equilibrium of FPA for an n-tuple of valuation distributions in this set then c Supp ,µ
− .3#

for all 1 i n, that is, the support of the bid distribution of every bidder includes c.  Otherwise,Ÿ Ÿ

there would exist some bidders who would bid almost surely above c , with 0, and at least % %

one bidder would experience strictly negative payoffs for valuations in c,c  while he canÒ  Ñ%

always obtain at least zero (by submitting his valuation).  This property implies (Lemma 8) that

any bid strictly larger than c from any bidder has a strictly positive probability of winning.

Consequently, no bidder will bid strictly higher than his valuation since it would result in a

strictly negative payoff.

4.Upper Hemicontinuity

In Lebrun (1996, Lemma 1 p. 430), we showed that under our assumptions there always exists an

equilibrium of FPA and thus of FPA.  Equivalently, the Nash equilibrium correspondence µ  µ
œa

marg  has non-empty values.  Theorem 2 below states that the graph of this correspondence ‰

a

is closed.



Theorem 2:  The Nash equilibrium correspondence  marg  has non-empty values anda a
µ

œ ‰ 

its graph is closed.  Moreover, the payoff function P  is continuous on the image im  of .µ µ µ
a a

Proof:  See Appendix 2.

Since c,L  is compact, Corollary 1 below follows immediately from Theorem 2 (see, forŒÐÒ Ó Ñ# 8

example, Duffie 1988, exercise 19.2 (B) p.199).

Corollary 1:  The Nash equilibrium correspondence  is upper hemicontinuous.a
µ

The statement in Corollary 1 means that  F , ,F   c,L   F , ,F   O  isÖ Ð á Ñ − ÐÒ Ó Ñ ± Ð á Ñ § ×
µ

" 8 " 8
# 8Œ a

open, for all open set O  c,L .  The statements in Theorem 2 mean that for all sequence§ ÐÒ Ó ÑŒ # 8

Ð á Ñ ÐÒ Ó Ñ Ð á Ñ Ð ÑF , ,F  in c,L  which converges weakly towards F , ,F , if  is a"
6 6 # 8 6

8 6 " " 8 6 "Œ .

sequence in c,L  such that  is a Nash equilibrium of FPA F , ,F , that is,Œ .ÐÒ Ó Ñ Ð á Ñ
µ# 8 6 6 6

" 8

. a . .6 6 6
" 8− Ð á Ñ  

µ
F , ,F , for all l 1, and which converges weakly  towards  then  is a Nash

equilibrium of FPA F , ,F , that is, F , ,F  and moreover P  tends towardsµ
Ð á Ñ − Ð á Ñ Ð Ñ

µ µ
" 8 " 8

6. a .

P .µ
Ð Ñ.

Although the limit of Nash equilibria of the standard first price auction FPA may not be

an equilibrium of the same auction game, from Theorem 1 (i) and the upper hemicontinuity of a
µ

stated in Corollary 1 the limit is a Nash equilibrium of the technical variant FPA and it can beµ

extended to an equilibrium of the first price auction FPA with the large set c,L  of messages used
Ò Ó

in breaking the ties.  From Theorem 1 (ii) and the continuity of P  over im  stated in Theoremµ µ
a

2, the payoffs in the standard auction will tend towards the payoffs in FPA and FPA.  Fromµ 

Theorem 1, Theorem 2, and Corollary 1 the same statements hold true with, instead of the

standard auction FPA,  the auction FPA' with the small set 0,1  of messages.Ö ×



The proof of Theorem 2 proceeds as follows.  We consider any subsequence such that the

n-tuple of payoffs P , ,P  is convergent.  We first prove that in the gameÐ á ÑÐ Ñ
µ µ

" 8
6.

FPA F , ,F  bidder i cannot obtain a higher payoff than the limit  lim P  of his payoffsµ
Ð á Ñ Ð Ñ

6p ∞

µ
" 8 3

6.

in the converging games.  In fact, if it was the case there would exist a strategy  which would)3

give bidder i against  in the game FPA F , ,F  a payoff larger by a certain strictly positive.3 " 8
µ

Ð á Ñ

number 0 than his equilibrium payoffs and thus any payoffs he can obtain against  in the$ . 3
6

games FPA F , ,F , for all l large enough.  That is, there would exist  such thatµ
Ð á Ñ"

6 6
8 3)

(1)  P ,   P ,   ,µ µ
Ð Ñ  Ð Ñ 3 3 3 3 3 3

6 6) . / . $

for all l large enough and for all strategy  of bidder i in FPA F , ,F .  However, as we show/3
6 6 6

" 8
µ

Ð á Ñ

in Lemmas 11 and 12 (Appendix 2), for all 0 there exists a function  of v  such that the% ' 3 3

strategy of bidder i consisting in bidding according to this function is an -best response to  in% .3

the game FPA F , ,F  and gives expected payoffs against  in the games FPA F , ,Fµ µ
Ð á Ñ Ð á Ñ" 8 3

6 6 6
" 8.

which tend towards the expected payoff against  in the game FPA F , ,F .  The existence.3 " 8
µ

Ð á Ñ

of such a function for    rules out the existence of  since (1) would imply P ,  % $ ) ) . Ð Ñ 
µ

3 3 3 3

P ,   , while the limit of P ,  is not smaller than P , .  The functionµ µ µ
Ð Ñ  Ð Ñ Ð Ñ 3 3 3 3 3 3 3

6 6
3 3' . $ ' . ) . %

'3 ! " 7 is a step function constructed by taking an increasing finite sequence c w , w , , w Lœ á œ

of valuations in c,L  which are not mass points of F  and such that the distances betweenÒ Ó œ.3 3"

two consecutive elements are small enough and by defining the constant value of  over'3
(

Ò Ñw ,w  as a bid which is not a mass point of the highest bid from the other bidders using 5" 5 3.

and which is a -best response to  when bidder i's valuation is equal to w .  Such a bid% .3 5"

exists for all k 1 since if it happens that an -best response bid is equal to a mass point of the  %

highest bid of , that is, there is a strictly positive probability of a tie if this bid is submitted, it.3

suffices to change it slightly to find a suitable bid.  Following this procedure, we can construct a

“bid function"  such that the set of discontinuities of bidder i's payoff p v , v ,v ,b' '3 3 3 3 3 3 3
µ Ð Ð Ñ Ñ



when he follows  has a F  measure equal to 0 and such that the strategy it' . . .3 3" 3 3 3Œ œ Œ

determines in FPA F , ,F  is an -best response to .  Such a function  fulfills ourµ
Ð á Ñ" 8 3 3% . '

requirements.

The second part of the proof consists in showing that bidder i can obtain at least the limit

of his equilibrium payoffs by playing the limit  of his equilibrium strategies, that is, that.3

P        lim P .  This inequality is an easy consequence of the first part of the proofµ µ
Ð Ñ   Ð Ñ

6p ∞
3 3

6. .

and the property of upper semicontinuity of the sum of the payoffs p  which implies the upper�
3œ"

8

3
µ

semicontinuity with respect to  in c,L  of  P .  In fact, if this inequality did not hold/ Œ /ÐÒ Ó Ñ Ð Ñ
µ#

3œ"

8

3�
true, as  tends towards  the sequence P  would exhibit a “jump down" to P .  Since. . . .6 6

3 3
µ µ

Ð Ñ Ð Ñ

�
3œ"

8

3 4
6P  can never exhibit a “jump down", there would exist at least one j i such that Pµ µ

Á Ð Ñ.

would jump up to P .  This is impossible from the first part of the proof and this completesµ
Ð Ñ4 .

the proof of the closedness of the graph.  Finally, in the course of this proof we showed that the

limit of any convergent subsequence of P  is equal to P .  The statement about P  inÐ Ð ÑÑ Ð Ñ
µ µ µ

. .6
6 "

Theorem 2 then follows.

A first consequence of the upper hemicontinuity of  is Corollary 2 below stating, fora
µ

all F , ,F  in c,L , the existence of an equilibrium of FPA F , ,F , or equivalentlyÐ á Ñ ÐÒ ÓÑ Ð á Ñ
µ

" 8 " 8
8Œ

(see (i) in Theorem1) of FPA F , ,F , where bidders do not bid higher than their valuations
Ð á Ñ" 8

with a strictly positive probability.  From (iii) in Theorem 1, it is equivalent to stating that there

exists such an equilibrium of the first price auction FPA' F , ,F  with the set 0,1  ofÐ á Ñ Ö ×" 8

messages or that the correspondence   marg '  has non-empty values.a h a h
µ

∩ œ Ð ‰ Ñ ∩8 8

Notice that it implies that ' has non-empty values and thus that there always exists at least aa

equilibrium of FPA'.

Corollary 2:  The correspondence   marg '  has non-empty values.a h a h
µ

∩ œ Ð ‰ Ñ ∩8 8



Proof:  See Appendix 2.

To prove Corollary 2 it suffices to approximate any F , ,F  by a sequence F , ,F  suchÐ á Ñ Ð á Ñ" 8 6 ""
6 6

8

that c belongs to the supports of F , , F , for all l, and to apply Theorem 1 (iv) and the upper"
6 6

8á

hemicontinuity of  (Corollary 1).a
µ

5.Continuity

The upper hemicontinuity of marg  immediately implies its continuity over any set ofa a
µ

œ ‰ 

n-tuples F , ,F  where  is single-valued.  Examples of assumptions under which  isÐ á Ñ
µ µ

" 8 a a

single valued can be found in Lebrun (1997 a, b, and 1999).   These papers consider the case

where the continuous from the right variants of the valuation cumulative distribution functions,

which we also denote by F , ,F , satisfy Assumption A below:" 8á

A.  F , ,F  have their supports equal to the same interval c,d , with c d, are differentiable" 8
)á Ò Ó 

over c,d , and are such that their derivatives the density functions f , ,f ,  are locallyÐ Ó  á " 8

bounded away from zero over c,d .Ð Ó

The results in Lebrun (1997 a, b, and 1999) about the characterization, existence, and uniqueness

of the Bayesian-Nash equilibrium under mandatory and voluntary bidding can easily be shown to

imply that the Nash equilibrium (as we have defined it in the present paper) of FPA F , ,F  isµ
Ð á Ñ" 8

unique, that is,  and thus (from Theorem 1 (iv) and (iii)) marg' ' are single-valued ata a
µ

‰

Ð á ÑF , ,F  under any of the following assumptions :" 8

B.  In addition to Assumption A, F c , ,F c 0, F , ,F  are right-differentiable at c, and" 8 " 8Ð Ñ á Ð Ñ  á

the derivatives f , ,f  are bounded away from zero over c,d ." 8á Ò Ó



C.  In addition to Assumption A, F c , ,F c 0 and there exists 0 such that F , ,F" 8 " 8Ð Ñ á Ð Ñ œ  á$

are strictly log-concave over c,c .Ð  Ñ$

D.  In addition to Assumption A, there exists 1 m n and two distributions G  and GŸ Ÿ " #

absolutely continuous over c,d  such that F G , for 1 i n, F G , for m j n, andÒ Ó œ Ÿ Ÿ œ  Ÿ3 " 4 #

there exists 0 such that v 0, for all v in c,c .$ $ Ð Ñ  Ð  Ód
dv G

G"

#

E.  In addition to Assumption A, F F ." 8œ á œ

In Assumption B, c is a mass point of all distributions F , , F .  In Assumption C, c is not a" 8á

mass point af any of the distributions F , ,F  and these distributions are strictly log-concave in" 8á

a (right) neighborhood of c.  In Assumption D, there are up to two different valuation

distributions and there exists a relation of stochastic dominance  between them in a neighborhood*

of the lower extremity c.  Assumption E describes the standard symmetric case.  The uniqueness

under Assumption B follows from Corollary 1 in Lebrun (1997a) and under Assumption E from

Corollary 3 (v) in the same paper (or from Corollaries 2 and 4 (v) in Lebrun 1997b).  The

uniqueness under Assumption C or D follows from Lebrun (1999).  We thus have Corollary 2

below.

Corollary 2:  Let  be a subset of c,L  over which  is single valued.  Then the’ Œ aÐÒ ÓÑ
µ8

correspondence  marg  is continuous over .  In particular, the correspondencea a ’
µ

œ ‰ 

a a
µ

œ ‰ Ð á Ñ marg  is single valued and continuous over the set of n-tuples F , ,F  which satisfy" 8

one or more of the assumptions B, C, D, E.  Moreover, over this latter set marg' ' coincides‰a

with marg  and is thus single valued and continuous.a a
µ

œ ‰ 



Consequently, any numerical estimate (see references in the introduction) or any property of the

Nash equilibrium (see references in the introduction) for particular n-tuples F , ,F  isÐ á Ñ" 8

somewhat robust to the choice of valuation distributions in the set of Corollary 2 and no “razor-

edge" effect can appear.  For example, when n 2 Lebrun (1996) analytically proves that theœ

seller's expected revenues are strictly larger at the unique equilibrium of the first price auction

than at the unique equilibrium in weakly dominant strategies of the second price auction for the

couples F ,F  of distributions over 0,1  such that F v v  and F v v , for all v in 0,1 ,Ð Ñ Ò Ó Ð Ñ œ Ð Ñ œ Ò Ó" # " #
# $

with 1/2, and thus for any couples of distributions of maxima of uniformly distributed#$  

independent random variables.  Since the seller's expected revenues in both cases are the

expectations of continuous functions of the bidders' strategies (as we have defined them here),

this ranking still holds true in the intersection of an open neighborhood of any such couple"!

Ð Ñ ÐÒ ÓÑF ,F  in 0,1  with the set of couples of distributions satisfying one or more of the" #
#Œ

Assumptions  B, C, D, or E.""

The upper hemicontinuity of  cannot only be used to extend properties, it can also bea
µ

used to rule out some extensions.  For example, Lebrun (1998) proves the result of comparative

statics stating that if the n-tuple of distributions is composed of up to two different distributions

and if one of these two distributions is replaced by a new distribution which dominates it

stochastically according to the relation of stochastic dominance introduced around c in

Assumption C and if the equilibria of the first price auction before and after the change are

unique, then the new bid probability distributions first-order stochastically dominate the old

distributions and, in particular, the bid function of the bidders whose valuation distribution has

not changed will increase.  We first remark (see Theorem 1 in Lebrun 1997a and Theorems 1 and

2 in Lebrun 1997b) that under Assumption A, at an equilibrium of any first price auction game

(among FPA, FPA, and FPA') bidder i's bid probability distribution conditional on the valuationµ 

v  is concentrated at one point denoted by v , for all 1 i n and F -almost all valuation v .3 3 3 3 3" Ð Ñ Ÿ Ÿ

Any equilibrium, as defined in this present paper, is thus determined by an n-tuple of bid



functions unique F F - almost everywhere.  The variant we take for such an n-tuple is" 8Œá Œ

the n-tuple of bid functions defining a Bayesian equilibrium, that is, such that v  maximizes"3 3Ð Ñ

bidder i's expected payoff  when his valuation is equal to v  .  We now state the result from"#
3

Lebrun (1998, Theorem A1) more precisely: for any two n-tuples of distributions F , ,F  andÐ á Ñ" 8

Ð á Ñ Ÿ ŸF , ,F  satisfying Assumption A such that there exist 1 m n and G , G , and G  with‡ ‡ ‡
" 8 #" #

(2)      v 0, for all v in c,d ,d
dv G

G‡
#

#
Ð Ñ  Ð Ó

F F F F G , F F G , F F G , and" 7 " 7" 8 #
‡ ‡ ‡ ‡ ‡
" 7 7" 8 #œ á œ œ œ á œ œ œ á œ œ œ á œ œ

such that the equilibria of FPA F , ,F  and FPA F , ,F  are unique, we haveµ µ
Ð á Ñ Ð á Ñ" 8

‡ ‡
" 8

# #‡
" "Ð Ñ  Ð Ñv v ,

for all v in c,d , andÐ Ó

G b   G b ,‡ ‡ "
# #

"
# #Ð Ð ÑÑ  Ð Ð ÑÑ$ $

for all b in c, d d , when , ,  and , ,  are the “bid functions" definingÐ Ð Ñ œ Ð ÑÓ Ð á Ñ Ð á Ñ# $ " " " "" # " 8
‡ ‡
" 8

the equilibria of FPA F , ,F  and FPA F , ,F , respectively, with  ,µ µ
Ð á Ñ Ð á Ñ œ á œ œ" 8 " 7 "

‡ ‡ "$
" 8 " " #

" " # " " $ " " $‡ ‡ ‡ ‡ ‡ ‡
" 7 " 7" 8 #7" 8 #œ á œ œ œ á œ œ œ á œ œ, , and .

We now show that this result of comparative statics does not generalize to situations

where the n-tuple of valuation distributions counts strictly more than two distributions.  Actually,

we show that if F ,F  and F ,F  are two n-tuples of valuation distributions satisfyingÐ Ñ Ð Ñ3 3 3
‡
3

Assumption A with the same distributions F , j i, such that FPA F ,F  and FPA F ,F  have4 3 3 3
‡
3Á Ð Ñ Ð Ñ

µ µ

unique equilibria ,  and ,  (respectively), then the stochastic dominance of F  by FÐ Ñ Ð Ñ" " " "3 3 3
‡ ‡ ‡
3 3 3

in the (strong) sense (2) does  imply in general that the probability distribution of the bid fromnot



bidder j, j i, in the equilibrium ,  first-order dominates this distribution in theÁ Ð Ñ" "‡ ‡
3 3

equilibrium , , nor does it imply that the probability distribution of the highest bid from theÐ Ñ" "3 3

bidders j, j i, in the equilibrium ,  dominates this distribution in the equilibriumÁ Ð Ñ" "‡ ‡
3 3

Ð Ñ" "3 3, .  In general, we have

(3) v 0, for all v in c,d ,d
dv F

F‡
3

3
Ð Ñ  Ð Ó

 does t imply  v   v , for all v in c,d  and j i,no " "‡
4 4Ð Ñ  Ð Ñ Ð Ó Á

 does  imply  F b   F b , for all b innot # #
4Á3 4Á3

4 4
‡ "
4 4
"Ð Ð ÑÑ  Ð Ð ÑÑ" "

Ð Ð Ñ œ á œ Ð ÑÓc, d d ." "" 8

To establish this result, we first exhibit in the following proposition an example which does not

satisfy Assumption A but where the equilibria can easily be obtained and where a particular

increase of a bidder's valuation distribution does not result in increases of the probability

distributions of the bids from the other bidders.  Following standard lines, it is not too difficult to

prove Proposition 1 below (simultaneously with Proposition 2 in Appendix 3).

Proposition 1:  Consider the example with 3 bidders where bidder 1's valuation is equal to 0 with

probability p and 1 with probability 1 p, bidder 2's valuation is equal to 0 with probability q

and 1 with probability 1 q, and bidder 3's valuation is equal to x with probability 1 with 0 p, 

q 1 and 0 x 1.  Without loss of generality, we assume that q p.  Then there exists one    

and only equilibrium , ,  of FPA F ,F ,F .  We denote by I, J, and H the cumulativeÐ Ñ Ð Ñ
µ

. . ." # $ " # $
"%

distribution functions of the equilibrium bid distributions, that is, the marginals over the bid

space of , , and , respectively.  If x  , the supports of the equilibrium bid. . ." # $  q
p q

distributions are as in Figure 1, and

J b I b H b 1, for all b Ð Ñ œ Ð Ñ œ Ð Ñ œ   (



J b I b  and H b 1, for b in Range A, that is, for b such that b b ,Ð Ñ œ Ð Ñ œ Ð Ñ œ Ÿ Ÿ
µ2 pqx 1 x

1 b
Ð Ð  ÑÑ



"Î#

(

J b I b  and H b 2 1 x  , for b in Range B, that is, for b such thatÐ Ñ œ Ð Ñ œ Ð Ñ œ Ð  ÑŠ ‹pqx
x b 1 b

x b
 

"Î#
"Î# Ð  Ñ"Î#

b b b ,µ Ÿ Ÿ
µ

J b q, I b , and H b , for b in Range C, that is, 0 b b ,Ð Ñ œ Ð Ñ œ Ð Ñ œ Ÿ Ÿµ
px

x b
2 px 1 x

q 1 b
Ð Ð  ÑÑ

Ð  Ñ

"Î#

"Î#

where

(  1 2 pqx 1 x , b 2x 1, and b x.œ  Ð Ð  ÑÑ œ  œ
µ

µ
"Î# q p

q

[FIGURE 1]

In Figure 1, the vertical lines represent the supports of the bid distributions and the full dots

represent possible mass points.  In the example of Proposition 1, assume that x   and q
p q

consider F  corresponding to q  such that q q and thus x  .  Let I,J,H  and I ,J ,H‡ ‡ ‡ ‡ ‡ ‡
#   Ð Ñ Ð Ñq

p q
‡

‡

be the equilibrium bid cumulative distribution functions when the valuation distributions are

Ð Ñ Ð Ñ Ð Ñ œF ,F ,F  and F ,F ,F , respectively.  Then, from the proposition above we see that H b  " # $ " $
‡ ‡
#

2 px 1 x / q 1 b   H b   2 px 1 x / q 1 b  and I b H b  Ð Ð  ÑÑ Ð Ð  ÑÑ  Ð Ñ œ Ð Ð  ÑÑ Ð Ð  ÑÑ Ð Ñ Ð Ñ œ"Î# ‡ "Î# "Î# ‡ ‡"Î#

2px 1 x q 1 b x b   I b H b   2px 1 x / q 1 b x b , for allÐ  Ñ Ð Ð  ÑÐ  ÑÑ  Ð Ñ Ð Ñ œ Ð  Ñ Ð Ð  ÑÐ  ÑÑ"Î# ‡ "Î# "Î#"Î#

b in 0,b x  and we thus have an example where the probability distributions of the bidÐ œ Ñµ
q p

q


from another bidder and of the highest bid from the other bidders do not stochastically increase

after a stochastic increase of the valuation distribution of bidder 2.  The bid probability

distributions of bidder 3 and of the highest bid from bidders 1 and 3 before and after the change

cannot be stochastically ranked.

In order to prove the existence of such an example with valuation distributions satisfying

Assumption A, all with mass points at c, thus satisfying Assumption B, and with the relation of

stochastic dominance introduced in (2) between F  and F , it suffices to construct sequences#
‡
#

Ð Ñ Ð Ñ Ð Ñ Ð ÑF , F , F , and F  of valuation distributions with these properties and"8 8 " #8 8 " 8 " $8 8 "
‡
#8



which converge towards the distributions F , F , F , and F  (respectively) of the previous" # $
‡
#

paragraph.  First take a sequence of functions g  from 0,1  to 0,1  which converges towards8 Ò Ó Ð Ó

F /F  and such that g  is differentiable with a strictly positive derivative over 0,1 , for all n 1.‡
# # 8 Ò Ó  

Then take sequences F , F , and F  of distributions satisfying assumption AÐ Ñ Ð Ñ Ð Ñ"8 8 " #8 8 " $8 8 "

with 0,1 c,d  such that F 0 0, F 0 0, and F 0 0, for all n, and thus satisfyingÒ Ó œ Ò Ó Ð Ñ  Ð Ñ  Ð Ñ "8 #8 $8

Assumption B.  Then, the sequences F , F , F F g , and F  willÐ Ñ Ð Ñ Ð œ Ñ Ð Ñ"8 8 " #8 8 " #8 8 8 " $8 8 "
‡
#8

display the required properties.  Let b be a bid in 0,b x .  Let I , J , H  be the bidÐ œ Ñµ
q p

q


8 8 8

cumulative distribution functions at the unique equilibrium when the valuations distributions are

F , F , and F  and let I , J , H  be the bid cumulative distribution functions at the unique"8 #8 $8
‡ ‡ ‡
8 8 8

equilibrium when the valuations distributions are F , F , and F , for all n 1.  Then, from the"8 $8
‡
#8  

upper hemicontinuity of  stated in Corollary 1 and thus its continuity over    F , F ,a ’
µ

œ Ö Ð "8
‡
#8

F , F , F , F  | n 1    F , F , F , F , F , F   there exists m 1 such that H b$8 "8 #8 $8 " # $ " $
‡ ‡
# 8Ñ Ð Ñ   × ∪ Ö Ð Ñ Ð Ñ ×   Ð Ñ

 Ð Ñ Ð Ñ Ð Ñ  Ð Ñ Ð Ñ     H b  and I b H b   I b H b , for all n m.  Remark that for n m, the first8 8 8
‡ ‡
8 8

inequality implies the existence of a neighborhood of b over which  and thus of a" "$8 $8
‡" "

neighborhood of b  over which , where  and  are bidder 3's equilibrium bid" " " " "$8
‡" ‡ ‡

$8 $8$8 $8Ð Ñ 

functions when the valuations distributions are F , F , F  and F , F , F , respectively."8 #8 $8 "8 $8
‡
#8

6. Conclusion

We proved the continuity of the Nash equilibrium of the first price auction in the independent

private value model with respect to the valuation distributions and thus established the robustness

of theoretical results and numerical investigations about this auction procedure.  We studied the

relationships among several variants of the first price auction and applied the continuity of the

equilibrium to disprove a conjecture of comparative statics.

Appendix 1.



Lemma 1:  Let F , ,F  be a n-tuple of distributions in c,L .  Let , ,  be aÐ á Ñ ÐÒ ÓÑ œ Ð á Ñ" 8 " 8
8Œ . . .

Nash equilibrium of F , ,F , where    FPA, FPA', FPA, FPA .   Let b' be a mass> >Ð á Ñ − Ö ×
µ 

" 8

point of the probability distribution of the highest submitted bid when the bidders bid according

to .  Without loss of generality we can assume that there exists 1 l n such that. Ÿ Ÿ

   b' 0, , b' 0,. ."# 6#ÐÖ ×Ñ  á ÐÖ ×Ñ 

   b'     b'   0, c,b'   0, , c,b'   0.. . . .Ð6"Ñ# Ð6"Ñ#8# 8#ÐÖ ×Ñ œ á œ ÐÖ ×Ñ œ ÐÒ ÓÑ  á ÐÒ ÓÑ 

Then for all 1 i l such that marg c,b' b' 0 , we haveŸ Ÿ ‰ ÐÒ Ñ ‚ Ö ×Ñ .3

(A1)  Prob  bidder i wins  bidder i bids b'  and v   b'   0.Ð ±  Ñ œ3

If l 1 and if marg b',L b' 0, we have ‰ ÐÐ Ó ‚ Ö ×Ñ .3

(A2)  Prob  bidder i wins  b' is the highest bid, bidder i bids b' and v   b'   1.Ð ±  Ñ œ3

There exists j such that 1 j l andŸ Ÿ

(A3) marg b',L b'  0, for all 1 i l and i j.‰ ÐÐ Ó ‚ Ö ×Ñ œ Ÿ Ÿ Á.3

When l  1, there exists 1 j l such that (A3) holds true and such that Ÿ Ÿ

(A4)   marg b',L b' 0.‰ ÐÒ Ó ‚ Ö ×Ñ .4



Proof:  If (A1) did not hold, bidding according to  and thus bidding b' for a set of strictly.

positive measure of v   b' would contribute negatively to bidder i's expected payoff.3 

Submitting, for example, b v  would strictly increase his expected payoff and  could not be anœ 3 .

equilibrium.

If (A2) was not true when l 1, then for a strictly positive measure set of v , submitting 3

a bid b slightly larger than b' rather than b' itself would increase bidder i's probability of winning

discontinuously and would decrease his potential payment only continuously.   His expected

payoff would then be strictly increased (for similar reasoning see Griesmer, Levitan and Shubik

1961).

If l 1, (A3) is immediate.   Consider the case l  1.   The property (A2) implies thatœ 

there exists at most one bidder j, with 1 j l, such that marg b',L   b'   0.Ÿ Ÿ ‰ ÐÐ Ó ‚ Ö ×Ñ .4

Consequently at least l 1  bidders bid b' for valuations not larger than b' and (A3) is proved.Ð  Ñ

Assume (A4) is not true.   Then for each j verifying (A3) (there is at least one such j), we

have marg b',L   b' 0.   As a consequence we have marg b',L   b' 0‰ ÐÒ Ó ‚ Ö ×Ñ œ ‰ ÐÒ Ó ‚ Ö ×Ñ œ. .4 3

and marg c,b'   b' 0, for all 1 i l.   This, however, contradicts (A1) and we‰ ÐÒ Ñ ‚ Ö ×Ñ  Ÿ Ÿ.3

have proved that there exists j such that (A4) holds true.   ||

Lemma 2:   Under the assumptions of Lemma 1, if l 1 we have

              b'       max min Supp .œ
" Ÿ 3 Ÿ 8

.3#

Proof:  We define b  as follows

   b    max min Supp . œ
" Ÿ 3 Ÿ 8

.3#



b  is the minimum of the support of the highest bid.  Let b' and l 1 as in Lemma 1.  We must 

prove that b'  b .  Since b' is a mass point of the distribution of the highest bid, we have b' œ  

b .  We must thus prove the reverse inequality.  When l 1, we know from (A4) in Lemma 1 that 

there exists 1 j l such that (A3) applies.  There also exist l 1  other indices i  j suchŸ Ÿ Ð  Ñ Á

that

(A5)              marg c,b' b'  0.‰ ÐÒ Ó ‚ Ö ×Ñ .3

We denote by V  the set of valuations v  not larger than b' for which bidder i bids b' with a strictly3 3

positive probability.  V  has a strictly positive F -measure.3 3

Assume first that there exist such an index i  j and a subset W  of V , of strictlyÁ 3 3

positive F -measure and such that v b', for all v  in W .  Then, from (A4) we know that the3 3 3 3

probability that bidder i wins if he submits b' and if his valuation belongs to W  is equal to zero.3

Since a lower bound of this probability is given by Prob  max  b   b'  =   Prob b   b' Ð  Ñ Ð  Ñ
5 Á 3

5 5
5Á3

#
œ ÐÒ ÑÑ Á ÐÒ ÑÑ œ Ÿ  c, b' , we see that there exists k i such that c, b'   0, that is b'  min#

5Á3
5# 5#. .

Supp  and thus b'  b , and b' b ..5# Ÿ œ 

Assume next that there does not exist an index i as in the previous paragraph.  As a

consequence, any index i verifying (A5) is such that marg b' b'  0.  .  If it was the‰ ÐÖ × ‚ Ö ×Ñ .3

case that b'  b , we would have  c, b'    c, b'   0 and there would exist ÐÒ ÑÑ   ÐÒ ÑÑ 
# #
5Á3

5# 5#
"Ÿ5Ÿ8

. .

% % . % Ð   Ñ ÐÒ  ÑÑ 
5 Á 3

0 such that  Prob  max  b   b'  =   c, b'   0.  Bidder i's payoff when b'5 5#
5Á3

#
is his valuation and when he submits b'  would then be strictly positive and would thus be %

strictly larger than what he obtains if he submits b' as his equilibrium strategy prescribes.  This is

impossible and thus b'  b , and b' b .  ||Ÿ œ 



Lemma 3:  Under the assumptions of Lemma 1, if l 1 and if there exists 1 i l such that Ÿ Ÿ

.3ÐÒ Ñ ‚ Ö ×Ñ  Ÿ Ÿ Á c,b b  0 then there exists 1 j n such that j i and (A4) holds true and such

that c,b   0 and thus such that b min Supp , where b  is as defined in Lemma 2.. .4# 4#ÐÒ ÑÑ œ œ  

Proof:  Since l 1, there is a strictly positive probability of a tie.  From Lemma 2, we know that

the tie can only happen at b max min Supp .  Assume that for all j i such that (A4) œ Á
" Ÿ 3 Ÿ 8

.3#

holds true we have c,b   0.  Then there is a strictly positive probability that these.4#ÐÒ ÑÑ 

bidders j will not be involved in the tie.  In fact, there is a strictly positive probability that, for all

such j, bidder j bids strictly less than b .  Consequently, there is a strictly positive probability that

the bidders k involved in the tie will be such that (A4) does not hold true, that is, that

marg b',L b' 0.  Since b' 0 , all bidders k involved in the tie would be‰ ÐÒ Ó ‚ Ö ×Ñ œ ÐÖ ×Ñ . .5 5#

such that c,b' b' 0.   However, this contradicts (A1) and Lemma 3 is proved.  ||.5ÐÒ Ñ ‚ Ö ×Ñ 

Lemma 4:  Let F , ,F  be a n-tuple of distributions in c,K .  Let , ,  be aÐ á Ñ ÐÒ ÓÑ œ Ð á Ñ" 8 " 8
8Œ . . .

Nash equilibrium of F , ,F , where ,    FPA, FPA', FPA, FPA .  Then  is a> > D C .Ð á Ñ œ Ð Ñ − Ö ×
µ 

" 8

Nash equilibrium of FPA F , ,F  and P marg .µ
Ð á Ñ Ð Ñ œ Ð Ñ

µ
" 8 C . .

Proof:  Let , ,  be a Nash equilibrium of F , ,F .  We first show that. . . >œ Ð á Ñ Ð á Ñ" 8 " 8

C . .3 3Ð Ñ œ Ð Ñ Ÿ Ÿ
µP marg , for all 1 i n.  Consider first the case where, in the notation of Lemma

1,  l 1 for all mass point b' of the probability distribution of the highest bid when the biddersœ

follow .  Then, according to  there is a zero probability of a tie.  Since  and p  agree outside. . 1 µ

ties, we have P marg , for all 1 i n.  Assume now that if  is followed thereC . . .3 3Ð Ñ œ Ð Ñ Ÿ Ÿ
µ

exists a bid b' where there is a strictly positive probability of a tie, that is, where (in the notation

of Lemma 2) l 1.  From Lemma 2 we know that b' b  where b is the minimum of the support œ 

of the highest bid i.e. b  max min Supp .  If there is a strictly positive probability that œ
" Ÿ 3 Ÿ 8

.3#

bidder i is involved in a tie at b , breaking the tie will have the same result on his payoff in all



games.  In fact, if bidder i bids b  with a strictly positive probability for a set of strictly positive

probability of valuations v b  Lemma 3 implies that with probability one a bidder j will be3 

involved in the tie with a valuation at least as large as b .  From Lemma 1 for almost all

valuations v b  such that bidder i bids b  with a strictly positive probability he wins the tie in3  

> with a probability zero.  The same outcome takes place in FPA since bidder j has almost surelyµ

a strictly larger valuation.  If bidder i bids b  for his valuation v b , any way the tie is broken œ3

in any game will give a zero payoff to bidder i.  If bidder i bids b  with a strictly positive

probability for a set of strictly positive probability of valuations v b , from Lemma 1 his3 

probability of wining the tie in those cases in  is equal to 1.  From Lemma 1, any other bidder>

involved in the tie has almost surely a valuation not larger than b .  Consequently, in the game , Ðf

P  he will also win the tie with probability one.  Since the payoff p  and  in both games onlyµ
Ñ µ 1

differ at the ties, we have proved P marg , for all 1 i n.C . .3 3Ð Ñ œ Ð Ñ Ÿ Ÿ
µ

Suppose that there exists  such that P ,marg   P marg .  Then, by/ f / . .3 3 3 3 3 3− Ð Ñ  Ð Ñ
µ µ

reasoning as in the proofs of Theorems 1 and 2 in Lebrun (1996) it is possible to show that for all

% - f - . / . % - − Ð Ñ  Ð Ñ 
µ µ0 there exists  such that P ,marg   P ,marg    and following 3 3 3 3 3 3 3 3 3

bidder i does not bid with a strictly positive probability any mass point of the distribution of the

highest bid from the other bidders if they follow marg .  For all bid b' where there is a‰ .3

strictly positive probability of a tie, it suffices to alter slightly  by submitting a smaller bid when/3

bidder i's valuation is smaller than b' and by submitting a larger bid when bidder i's valuation is

larger.  More precisely, let b h 1  be the set of mass points of the distribution of the highestÖ ±   ×2

bid from marg .  This set is at most countable.  For every b  in this set which  submits with a. /3 2 3

strictly positive probability and for almost every valuation v b  for which  submits b , it3 2 3 2Á /

suffices to bid slightly above or under b  depending on whether v b  or v b , respectively,2 3 2 3 2 

to a bid which does not belong to b h 1  (this change can be done in a measurable way).Ö ±   ×2

By taking 0 small enough, we have P ,marg   P marg .  Since  and p  differ% - . . 1 Ð Ñ  Ð Ñ
µ µ µ

3 3 3 3

only at the ties, we would have ,   P ,marg   P marg , whereC - . - . C . .3 3 3 3 3 3 33
‡Ð Ñ œ Ð Ñ  Ð Ñ œ Ð Ñ

µ µ



- D - .3
‡

3 " # 3 is any strategy in  whose marginal over c,L c,L  is equal to .  However,  is anÒ Ó ‚ Ò Ó

equilibrium of  and this inequality is impossible and we have proved Lemma 4.  ||>

Lemma 5:  Let F , ,F  be a n-tuple of distributions in c,L .  Let , ,  be aÐ á Ñ ÐÒ ÓÑ œ Ð á Ñ" 8 " 8
8Œ . . .

Nash equilibrium of FPA F , ,F .  If ' is a n-tuple of strategies in FPA' F , ,F  such thatÐ á Ñ Ð á Ñ" 8 " 8.

marg ' ,  then ' is a Nash equilibrium of FPA' F , ,F  and P' ' P .. . . . .œ Ð á Ñ Ð Ñ œ Ð Ñ" 8

Proof:  Let  and ' be as in the statement of the lemma.  We first show that P ' ' P , for. . . .3 3Ð Ñ œ Ð Ñ

all 1 i n.  Consider first the case where, in the notation of Lemma 1,  l 1 for all mass pointŸ Ÿ œ

b' of the probability distribution of the highest bid when the bidders follow .  Then, according to.

. . . there is a zero probability of a tie.  Since p' and p agree outside ties, we have P ' ' P ,3 3Ð Ñ œ Ð Ñ

for all 1 i n.  Assume now that if  is followed there exists a bid b' where there is a strictlyŸ Ÿ .

positive probability of a tie, that is, where (in the notation of Lemma 1) l 1.  From Lemma 2 we

know that b' b  where b is the minimum of the support of the highest bid i.e. b  max minœ œ   " Ÿ 3 Ÿ 8

Supp .  If there is a strictly positive probability that bidder i is involved in a tie at b , breaking.3# 

the tie will have the same result on his payoff in all games.  In fact, from Lemma 1 if bidder i is

involved in the tie with a strictly positive probability it is almost surely when his valuation

v b  and any way the tie is resolved in any game will give a zero payoff to bidder i.  Since the3 œ

payoffs p' and p in both games only differ at the ties, we have proved P' ' P , for all3 3Ð Ñ œ Ð Ñ. .

1 i n.Ÿ Ÿ

Suppose that there exists ' ' such that P ' ', '   P' ' P .  Then, by/ f / . . .3 3 3 3 3 3 3− Ð Ñ  Ð Ñ œ Ð Ñ

proceeding as in the proof of Lemma 4 it is possible to show that there exists ' ' with the- f3 3−

same property and such that following ' bidder i does not bid with a strictly positive probability-3

any mass point of the distribution of the highest bid from the other bidders if they follow ..3

Since p' and p differ only at the ties, we would have P marg ',   P ' ', '  3 3 3 3 3 3Ð Ñ œ Ð Ñ - . - .



P' ' P .  However,  is an equilibrium of FPA and this inequality is impossible and we3 3Ð Ñ œ Ð Ñ. . .

have proved Lemma 5.  ||

Lemma 6:  For all F , ,F  in c,L , we have F , ,F   Ð á Ñ ÐÒ ÓÑ Ð á Ñ ©
µ

" 8 " 8
8 8Œ a h+

marg ' F , ,F .‰ Ð á Ña " 8

Proof:  Let  be an element of F , ,F  such that v,b c,L b v   1, for all. a .
µ

Ð á Ñ ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ" 8 3
#

1 i n.  First consider the case where under  every mass point of the distribution of theŸ Ÿ .

highest bid is played with strictly positive probability by no more than one (and thus just one)

bidder.  That is, according to the notation of Lemma 1, l 1 for all mass point of the distributionœ

of the highest bid.  For all 1 i n, let  be any strategy of bidder i in FPA' which induces theŸ Ÿ . 3

same distribution over c,L  as  does.  Then proceeding as in te proof of Lemma 4 it is simpleÒ Ó# 3.

to prove that , ,  is a equilibrium of FPA'.. . .  œ Ð á Ñ" 8

Consider now the case when under  there exists a bid b' where there is a strictly positive.

probability of a tie, that is, where (in the notation of Lemma 1) l 1.  From Lemma 2, we know

that b' b  where b  is the minimum of the support of the highest bid, that is, b   max minœ œ   " Ÿ 3 Ÿ 8

Supp .  From Lemma 1, there exists 1 j l such that (A3) and (A4) hold true.  Moreover,.3# Ÿ Ÿ

here v,b c,L b v   1, for all i, and thus c,b b   0, for all. .3 3
#ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ ÐÒ Ñ ‚ Ö ×Ñ œ 

1 i l, and c,L \ b b   0, for all 1 i l and i j.Ÿ Ÿ ÐÐÒ Ó Ö ×Ñ ‚ Ö ×Ñ œ Ÿ Ÿ Á .3

For all i j, let ' be the  element of '  which induces the same measure over theÁ . f3 3

valuation-bid space c,L  and which always send the message 0, that is, marg '   andÒ Ó œ#
3 3. .

. . f' c,L 1 0.  Let '  be the element of the  element of '  which induces the same3 4 4
#ÐÒ Ó ‚ Ö ×Ñ œ

measure over the valuation-bid space c,L  and which always send the message 1, that is,Ò Ó#

marg '   and ' c,L 0 1.  Then P P' ' .  In fact, p and p' agree outside. . . . .4 4 4
#œ ÐÒ Ó ‚ Ö ×Ñ œ Ð Ñ œ Ð Ñ

µ

ties.  If there is a tie, it is almost surely at b b .  For 1 i l and i j, if bidder i bids b  it isœ Ÿ Ÿ Á 

almost surely for v b  and bidder i's payoff is the same no matter how the tie is solved.  If3 œ



bidder j is involved in the tie, if v b  the way the tie is solved does not matter.  If v b , with4 4œ Á 

probability 1 we have v b  and bidder j wins the tie with probability 1 in both games.4 

Consequently, we have P P' ' .  Then showing that ' is a Nash equilibrium ofµ
Ð Ñ œ Ð Ñ. . .

FPA' F , ,F  can proceed as in the proof of Lemma 4 .  ||Ð á Ñ" 8
"&

Lemma 7:  Let F , ,F  be an element of c,L  such that c  SuppF , for all 1 i n,Ð á Ñ ÐÒ ÓÑ − Ÿ Ÿ" 8 3
8Œ

and let  be an element of F , ,F .  Then c Supp , for all 1 i n.. a .
µ

Ð á Ñ − Ÿ Ÿ" 8 3#

Proof:  Let b  be the infimum of Supp , for all 1 i n.  From the definition of the game Ÿ Ÿ3 3#.

FPA, we have b   c, for all i.  Assume that max b   c.  Let J be the set of the indices ofµ
   

3
3 3

bidders whose lower extremities of their bid supports are equal to max b , that is, J   j |
3  œ Ö3

1 j n, b   max b  .  Since a winner is always declared in the game FPA, we have  ProbŸ Ÿ œ × 3

µ
4 3

"'

Ð − Ò Ñ Ñ 
3  the index of the winner belongs to J | v c,max b , for all j in J  0.  Consequently, there4 3

exists j J such that Prob  j wins the auction | v c,max b , for all j in J  0 and thus Prob− Ð − Ò Ñ Ñ 
3 4 3

Ð − Ò ÑÑ 
3 3  j wins the auction | v c,max b  0.  However, bidder j bids at least max b  with4 3 3

probability 1.  Consequently, his bidding for v c,max b  contributes strictly negatively to his4 3− Ò Ñ
3 

expected payoff.  Bidder j would then be strictly better off if he submitted, for example, a bid

equal to his valuation with probability 1 for v c,max b .  This is impossible at an4 3− Ò Ñ
3 

equilibrium, and thus max b   c and Lemma 7 is proved.  ||
3  œ3

Lemma 8:  Let F , ,F  be an element of c,L  such that c  SuppF , for all 1 i n,Ð á Ñ ÐÒ ÓÑ − Ÿ Ÿ" 8 3
8Œ

and let  be an element of F , ,F .  Then v,b c,L b v   1, for all. a .
µ

Ð á Ñ ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ" 8 3
#

1 i n.Ÿ Ÿ



Proof:  For all 1 i n, let .|v  be a conditional probability distribution of  over the secondŸ Ÿ Ð Ñ. .3#

component space.  Then v,b c,L b v   c,v |v  d   c,v |v  dF .. . . .3 3# 3" 3# 3
#ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ ÐÒ Ó Ñ œ ÐÒ Ó Ñ' '

We show that c,v |v   1 for F -almost all v in c,d .  Assume there exists a Borel subset B.3# 3ÐÒ Ó Ñ œ Ò Ó

of c,d  of strictly positive F - measure such that c,v |v   1 and thus v,d |v   0, forÒ Ó ÐÒ Ó Ñ  ÐÐ Ó Ñ 3 3# 3#. .

all v in B.  From the previous lemma, bids in c,d  have a strictly positive probability of winning.Ð Ó

Consequently, bids in v,d  contribute strictly negatively to bidder i's payoff if his valuation isÐ Ó

equal to v.  Bidder i's expected payoff would then be strictly increased if, for all v in B, he bid

b v instead of bidding in v,d  when his valuation is equal to v.  This is impossible at anœ Ð Ó

equilibrium and Lemma 8 is proved.  ||

Proof of Theorem 1:  The first inclusion in (i) follows from Lemma 5.  The inclusion

a a a a
µ µ

© ‰ ‰ ©
 marg  is proved in Lebrun (1996).  The inclusions marg  and

marg '  follow from Lemma 3.  Statement (i) then follows.  Lemma 3 implies (ii).‰ ©
µ

a a

Lemma 6 and (i) imply (iii).  Lemma 8 implies (iv).  ||

Appendix 2

This appendix deals only with the game FPA.  For the sake of convenience, we denote the valueµ

of p  at v , ,v ,b , ,b  by p v ,b ,v ,b  where the first arguments pertain to bidder i.µ µÐ á á Ñ Ð Ñ3 3" 8 " 8 3 3 3 3

Lemma 9:  Let  be a strictly positive number.  There exists a function  from c,L   c,L  to$ 3 Ò Ó ‚ Ò Ó" #

Ò Ó ÐÖÐ Ñ ± œ Ð Ñ×Ñ œ Ð Ð Ñ Ñµc,L  such that, , v ,b max b v, b   0 and     p v, v,b ,v ,b# 3 3 3 3 3 3 3. 3 3'
d v ,b   p v,b,v ,b  d v ,b     , for all v,b  in c,L  c,L .. . $3 3 3 3 3 3 3 3 3 " #Ð Ñ  Ð Ñ Ð Ñ    Ð Ñ Ò Ó ‚ Ò Óµ'

Proof:  It suffices to take v,b b if b is not a mass point of the distribution of the highest bid3Ð Ñ œ

form the bidders j i when they follow , v,b  is slightly (by at most ) above b if b is such aÁ Ð Ñ. 3 $

mass point and if v is strictly larger than b, and v,b  is slightly larger (by at most  than v if3 $Ð Ñ Ñ



v b and if b is such a mass point.  It is then easy to check that the statement of the lemma holds

true.  ||

Lemma 10: Let  be an element of .  Then, for all 0 there exists a measurable function. f %3 3 

function  such that v  is an -best response in c,L  from bidder i with valuation v  to ' ' % .3 3 # 3Ð Ñ Ò Ó

and v ,b max b v   0, for all v in c,L ,  takes only a finite number of. ' '3 3 3 3 3 " 3ÐÖÐ Ñ ± œ Ð Ñ×Ñ œ Ò Ó

values, and the set of discontinuity points of  in c,L  is a Borel set of F -measure 0.'3 " 3Ò Ó

Proof:  Let  w , w , , w  be a strictly increasing sequence in c,L  such that w   c,"(
! " 7 " !á Ò Ó œ

w L and |w w   , for all k, and such that F w , , w   0. For all v in7 5" 5 3 " 7œ  ±  ÐÖ á ×Ñ œ$

Ò Ó Ð Ñc,L , let v  be a  best response to  from bidder i when his valuation is v, that is, " 3" $ . '
p v, v ,v ,b  d v ,b    p v,b,v ,b  d v ,b   , for all b in c,L .3 3 3 3 3 3 3 3 3 3 3 3 #
µ µÐ Ð Ñ Ñ Ð Ñ   Ð Ñ Ð Ñ  Ò Ó" . . $'
Let  be the function from c,L  to c,L  such that v   v, v , for all v in c,L , where # # 3 " 3Ò Ó Ò Ó Ð Ñ œ Ð Ð ÑÑ Ò Ó" # "

is the function defined in the statement of Lemma 9 for .  Then from this lemma we have $ '
p v, v ,v ,b  d v ,b    p v, v ,v ,b  d v ,b    and thus 3 3 3 3 3 3 3 3 3 3 3 3
µ µÐ Ð Ñ Ñ Ð Ñ   Ð Ð Ñ Ñ Ð Ñ # . " . $' '
p v, v ,v ,b  d v ,b    p v,b,v ,b  d v ,b   2 , for all b, that is,3 3 3 3 3 3 3 3 3 3 3 3
µ µÐ Ð Ñ Ñ Ð Ñ   Ð Ñ Ð Ñ # . . $'
# $ 3Ð Ñv  is a 2 -best response and furthermore, from the definition of  in Lemma 9, we have

. # #3 3 3 3ÐÖÐ Ñ ± œ Ð Ñ×Ñ œv ,b max b v   0, for all v.  Consequently, in the range of  there is a

probability zero of a tie and thus Prob bidder i wins bidder i's valuation  w, bidder i's bidÐ ± œ

œ Ñb  is independent of w for all b in the range of .#

Let k be such that m k 1 and v in w ,w .  Using the observation in the end of the    Ò Ó5" 5

previous paragraph, we do not write the valuation as an argument of the probability of winning

when the bid is in the range of .  We then have#

' p v, w ,v ,b d v ,b3 5" 3 3 3 3 3
µ Ð Ð Ñ Ñ Ð Ñ# .

    v w  Prob i wins w  w w  Prob i wins wœ Ð  Ñ Ð ± Ð ÑÑ  Ð  Ð ÑÑ Ð ± Ð ÑÑ5" 5" 5" 5" 5"# # #



     v w  Prob i wins w   w v  Prob i wins v   2  Ð  Ñ Ð ± Ð ÑÑ  Ð  Ð ÑÑ Ð ± Ð ÑÑ 5" 5" 5"# # # $

    v w  Prob i wins w Prob i wins v  v v  Prob iœ Ð  Ñ Ð Ð ± Ð ÑÑ  Ð ± Ð ÑÑÑ  Ð  Ð ÑÑ Ð5" 5"# # #

wins v 2± Ð ÑÑ # $

     v v  Prob i wins v  3    p v, v ,v ,b  d v ,b  3 .  Ð  Ð ÑÑ Ð ± Ð ÑÑ  œ Ð Ð Ñ Ñ Ð Ñ µ# # $ # . $' 3 3 3 3 3 3

The first inequality follows from the fact that w  is a 2 -best response of bidder i with# $Ð Ñ5"

valuation w .  The second inequality follows from the fact that |v w |  , for all v in5" 5"  $

Ò Ó Ð Ñw ,w .  We thus see that w  is a 3 -better response from bidder i with valuation v in5" 5 5"# $

Ò Ó Ð Ñ Ð Ñw ,w  than v .  Since v  is a 2 -best response from bidder i with valuation v, we obtain5" 5 # # $

that w  is a 5 -best response from bidder i with valuation v in w ,w .# $Ð Ñ Ò Ó5" 5" 5

To end the proof of Lemma 10, it suffices now to take /5 and to define  over c,L$ % 'œ Ò Ó

as follows,

  v   w ,' #Ð Ñ œ Ð Ñ5"

if and only if v belongs to w ,w , for k 1, andÒ Ñ  5" 5

   L   w .' #Ð Ñ œ Ð Ñ7"

In fact, v  is a 5  best response from bidder i with valuation equal to v, for all v in c,L' $ %Ð Ñ œ Ò Ó"

and the set of possible discontinuities is included in w , ,w  and F w , ,w   0.  ||Ö á × ÐÖ á ×Ñ œ" 7 3 " 7

Lemma 11:  Let F , ,F  be a sequence in c,L  which converges weakly towardsÐ á Ñ ÐÒ ÓÑ"
6 6 8

8 6 " Œ

Ð á Ñ Ð Ñ Ð ÑF , ,F .  Let  be a sequence in F  which converges weakly towards  in" 8 6 " 3 33 3
6 6. f .

f % '3 3 3 " #Ð Ñ  Ò Ó Ò ÓF .  Then for all 0, there exists a measurable function  from c,L  to c,L  such that



the sequence  p v ,b ,v ,b  d F v ,b  d v ,b  tends towards  p v ,b ,v ,b' '3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3
6 6µ µÐ Ñ Ð ‡ ÑÐ Ñ Ð Ñ Ð Ñ' .

d F v ,b  d v ,b  andÐ ‡ ÑÐ Ñ Ð Ñ' .3 3 3 3 3 3 3

' 'p v ,b ,v ,b d F v ,b d v ,b p v ,b ,v ,b d v ,b d v ,b ,3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
µ µÐ Ñ Ð ‡ ÑÐ Ñ Ð Ñ   Ð Ñ Ð Ñ Ð Ñ ' . . . %

for all  in F .. f3 3 3Ð Ñ

Proof:  Let  be strictly positive.  Let  be the function as in the previous lemma corresponding to% '3

this .  The expected payoff p v ,b ,v ,b d F v ,b d v ,b  can be rewritten as% ' .' 3 3 3 3 3 3 3 3 3 33 3
6 6µ Ð Ñ Ð ‡ ÑÐ Ñ Ð Ñ

' p v , v ,v ,b dF v d v ,b .  The measures F  tend weakly towards3 3 3 3 3 3 3 3 33 3 3 3
6 6 6 6µ Ð Ð Ñ Ñ Ð Ñ Ð Ñ Œ' . .

F .  Since the set of discontinuities of p v ,b ,v ,b  is included in  v ,b ,v ,b  | b3 3 3 3 3 3 3 3 3 3 3 3Œ Ð Ñ Ö Ð Ñµ.

œ ×  Ð Ñ Ð Ð Ñ Ñµ maxb  , we have that the set of 2n 1 tuples v ,v ,b  where p v , v ,v ,b  is3 3 3 3 3 3 3 3 3 3'

discontinuous is included in  v ,v ,b  |  is discontinuous at v  or v   maxb  .  ThisÖ Ð Ñ Ð Ñ œ ×3 3 3 3 3 3 3 3' '

last set can be rewritten as follows

  v ,v ,b  |  is discontinuous at v     v ,v ,b  | v   maxb  .Ö Ð Ñ × Ö Ð Ñ Ð Ñ œ ×3 3 3 3 3 3 3 3 3 3 3' '-

The F -measure of the first set is equal to the F  measure of  v  |  is discontinuous at v  3 3 3 3 3 3Œ Ö ×. '

and is thus equal to 0.  The second set is included in the reunion    v ,v ,b  | z  -
5œ"

7

3 3 3 5Ö Ð Ñ œ

maxb  , where z , , z  is the finite range of .  The F -measure of the set 3 " 7 3 3 3× Ö á × Œ Ö' .

Ð Ñ œ × Ö Ð Ñ œ ×v ,v ,b  | z   maxb   is the  measure of  v ,b  | z   maxb   and , from3 3 3 5 3 3 3 3 5 3.

Lemma 10, is equal to 0.  Consequently, the F  measure of the set of discontinuities of3 3Œ .

p v , v ,v ,b  is equal to 0 and thus  p v , v ,v ,b  dF v  d v ,b  tends3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3
6 6µ µÐ Ð Ñ Ñ Ð Ð Ñ Ñ Ð Ñ Ð Ñ' ' .'

towards  p v , v ,v ,b  dF v  d v ,b .  Since the last integral is equal to ' '3 3 3 3 3 3 3 3 3 3 3
µ Ð Ð Ñ Ñ Ð Ñ Ð Ñ' .

p v ,b ,v ,b  d F v ,b  d v ,b , we have proved the first part of Lemma 11.3 3 3 3 3 3 3 3 3 3 3 3
µ Ð Ñ Ð ‡ ÑÐ Ñ Ð Ñ' .



The integrals  p v ,b ,v ,b  d F v ,b  d v ,b  and  p v ,b ,v ,b' '3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
µ µÐ Ñ Ð ‡ ÑÐ Ñ Ð Ñ Ð Ñ' .

d v ,b  d v ,b  can respectively be rewritten as  p v , v ,v ,b. . '3 3 3 3 3 3 3 3 3 3 3 3Ð Ñ Ð Ñ Ð Ð Ð Ñ Ñµ' '
d v ,b  dF v  and    p v ,b ,v ,b  d v ,b  d b v   dF v ,. . .3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3Ð ÑÑ Ð Ñ Ö Ð Ð Ñ Ð ÑÑ Ð ± Ñ × Ð Ñµ' ' '
where b v  is a conditional distribution of  with respect to v .  The second part of Lemma. .3 3 3 3 3Ð ± Ñ

11 then follows from the fact that v  is a -best response of bidder i to  and thus ' % .3 3 3Ð Ñ '
p v , v ,v ,b  d v ,b   p v ,b ,v ,b  d v ,b   , for all b .  ||3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
µ µÐ Ð Ñ Ñ Ð Ñ   Ð Ñ Ð Ñ ' . . %'

Lemma 12:  Let  be a sequence of Nash equilibria of FPA which converges weaklyÐ Ñ
µ

.6
6 "

towards .  Then  is a Nash equilibrium of FPA and P  tends towards P .. . . .
µ

Ð Ð ÑÑ Ð Ñ
µ µ6

6 "

Proof:  Let F , ,F  be the sequence in c,L  of marginal distributions of Ð á Ñ ÐÒ Ó Ñ Ð Ñ"
6 6 8 6

8 6 " " 6 "Œ .

which converges weakly towards F , ,F , the marginals of .  Since the payoffs are boundedÐ á Ñ" 8 .

there exists a subsequence , such that the limit of P , ,P , for t tending towardsÐ Ñ Ð á ÑÐ Ñ
µ µ

. .6 6
> " " 8

> >

∞, exists and is finite.  We will first prove that

            P ,      lim P ,µ µ
Ð Ñ Ÿ Ð Ñ

6p ∞
3 3 3 3

6) . .

for all 1 i n and all F .  Suppose there exist 1 i n and F  such thatŸ Ÿ − Ð Ñ Ÿ Ÿ − Ð Ñ) f ) f3 3 3 3 3 3

P ,      lim P .  There thus exists 0 and t' 1, such thatµ µ
Ð Ñ  Ð Ñ   

>p ∞
3 3 3 3

6) . . $>

          P ,   P   ,µ µ
Ð Ñ  Ð Ñ 3 3 3 3

6) . . $>

for all t t'.  Since   is a Nash equilibrium of FPA F , , F , for all t 1, we also have  Ð á Ñ  
µ

.6 6
"
6

8
> >>

(A7)    P ,   P ,   ,µ µ
Ð Ñ  Ð Ñ 3 3 3 3 3 3

6 6) . / . $> >



or, equivalently,

             p v,b  d   p v,b  d   ,' 'µ µÐ Ñ Ð Œ Ñ  Ð Ñ Ð Œ Ñ 3 33 3
6 6

3 3/ . ) . $> >

for all t t' and all  in F .  Let  be the function from the previous lemma corresponding  Ð Ñ/ f '3 3
6 6

3
> >

to   /2 and consider the measures    F .  We have  F , and thus% $ - ' - fœ œ ‡ − Ð Ñ3 3 3 3
6 6 6 6

3
> > > > 

(A8)                p v,b  d   p v,b  d   ,' 'µ µÐ Ñ Ð Œ Ñ  Ð Ñ Ð Œ Ñ 3 33 3
6 6

3 3- . ) . $> >

for all t t'.  From the previous lemma we also know that    lim  p v,b  d  exists,  Ð Ñ Ð Œ Ñ
>p ∞

µ'
3 3 3

6 6- .> >

is equal to p v,b  d , where    F , and is not smaller than p v,b' 'µ µÐ Ñ Ð Œ Ñ œ ‡ Ð Ñ3 33 3 3 33
6- . - '>

d   /2, for all  in F  and in particular for   .  We thus haveÐ Œ Ñ  Ð Ñ œ/ . $ / f / )3 3 3 3 3 3 3

           lim  p v,b  d         p v,b  d   /2.
>p ∞

µ µÐ Ñ Ð Œ Ñ   Ð Ñ Ð Œ Ñ ' '
3 33 3

6 6
3 3- . ) . $> >

This last inequality however contradicts (A8), there exists no such  and (A7) holds true for all)3

) f3 3 3− Ð ÑF .

In this second part of the proof of Lemma 12 we prove that, for all 1 i n, player i canŸ Ÿ

obtain at least the limit of his equilibrium payoffs P  by playing the limit  of hisµ
Ð Ñ3 3

6. .>

equilibrium strategies, that is, that

                          P      lim P .µ µ
Ð Ñ   Ð Ñ

>p ∞
3 3

6. . >

Suppose there exists 1 i n such that the inequality above does not hold, that is, P  Ÿ Ÿ Ð Ñ 
µ

3 .

lim P .  By taking a subsequence if necessary we can assume that P  is convergent
>p ∞

µ µ
Ð Ñ Ð Ñ3 3

6 6

3œ"

8

. .> >�



(since P  is bounded).  Because the function p  is upper semicontinuous, the integral pµ µ µ
3

3œ" 3œ"

8 8

3 3
� �'

d  considered as a function of the probability measure  is also upper semicontinuous./ /

Consequently, we have

               lim   P     lim   p  d    p  d   P .
>p ∞ >p ∞

µ µ
Ð Ñ œ Ÿ œ Ð Ñµ µ� � � �' '

3œ" 3œ" 3œ" 3œ"

8 8 8 8

3 3
6 6

3 3. . . .> >

There thus exist a convergent subsequence , ,  and 1 j n with j i such that. .6 6> >" # á Ÿ Ÿ Á

lim P   P , which contradicts the result of the first part of the proof and thus the
5p ∞

µ µ
Ð Ñ  Ð Ñ4 4

6. .>5

second part of the proof is finished.   ||

Proof of Theorem 2:  Immediate from Lemma 12.  ||

Proof of Corollary 2:  Let F , , F  be a sequence in c,L  which converges weaklyÐ á Ñ ÐÒ ÓÑ"
6 6 8

8 6 " Œ

towards F , , F  and such that c  Supp F , for all 1 i n.  Let  be a weaklyÐ á Ñ − Ÿ Ÿ Ð Ñ" 8 6 "3
6 6.

convergent sequence such that   F , ,F , for all l 1.  Let  be its limit.  From. a .6 6 6
" 8− Ð á Ñ  

µ

Corollary 1 or Theorem 2,  belongs to F , ,F .  From Theorem 1 (iv), we have. a
µ

Ð á Ñ" 8

. .3
6 # #

3ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ Ÿ Ÿ ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ  v,b c,L b v   1, for all 1 i n.  Since v,b c,L b v  

limsup v,b c,L b v , we have v,b c,L b v   1 and Corollary 2
6p ∞

ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ ÐÖÐ Ñ − Ò Ó ± Ÿ ×Ñ œ. .3
6 # #

3

is proved.  ||

Appendix 3

Proposition 2:  Under the assumptions of Proposition 1, if x   the supports of theŸ q
p q

equilibrium bid distributions are as in Figure 2, and



J b I b H b 1, for all b Ð Ñ œ Ð Ñ œ Ð Ñ œ   (

J b I b  and H b 1, for b in Range A, that is, for b such that b b ,Ð Ñ œ Ð Ñ œ Ð Ñ œ Ÿ Ÿ
µq 1 x px

1 b
Ð  Ñ

 (

J b q, I b , and H b , for b in Range C, that is, 0 b b ,Ð Ñ œ Ð Ñ œ Ð Ñ œ Ÿ Ÿ
µpx

x b q 1 b
q 1 x px

 Ð  Ñ
Ð  Ñ

where

( œ   Ð  Ñ œ
µ1 q q p x and b x.q p

q


[FIGURE 2]

Footnotes

 :  Bidding is thus mandatory.  However, we will assume in the next paragraph that the minimum"

allowable bid c is not larger than any possible valuation.  No bidder is thus forced to a strictly

negative payoff and any equilibrium would also be an equilibrium if bidding was only voluntary.

 :  The assumption c 0 was unnecessary in Lebrun (1996) and we do not keep it here.#  

 :  In Lebrun (1996), we assumed that the support of F  was included in c,K 1 , for all i, and,$
3 Ò  Ó

for the sake of convenience in the proofs where we shifted upwards some bid distributions, we

required the strategies to define bid probability distributions in c,K .  However, as it can be easilyÒ Ó

shown, no equilibrium involves strategies bidding above K 1.  Here, our bound L is equal to

the bound K 1 in Lebrun (1996).



 :  Consider the three bidder example where bidder 1's valuation is equal to 1 with probability 1,%

bidder 2's valuation is equal to 3 with probability 1, and bidder 3's valuation is equal to 1 with

probability 1/2 and 4 with probability 1/2.  If  is bidder 1's strategy consisting in always."

bidding 3,  is bidder 2's strategy which always bids 3, and  is bidder 3's strategy consisting in. .# $

bidding 0 if the valuation is equal to 1 and 3 if the valuation is 4.  Then , ,  is a NashÐ Ñ. . ." # $

equilibrium of FPA but cannot be extended in an equilibrium of FPA'.  In the  example with twoµ

bidders from the introduction of Lebrun (1996) (where bidder 1's valuation is concentrated at 0

and bidder 2's valuation is uniformly distributed over 0,1 ), there is no equilibrium of FPA butÒ Ó

there exists one of FPA' (where both bidders submit 0 with probability 1).

 :  In this example of footnote 4, bidder 2 has to loose with probability 1 as soon as bidder 3 is&

involved in the tie but has to win if he is involved in the tie with only bidder 1.

 :  Since for any Nash equilibrium ' of FPA' marg' ' is a Nash equilibrium of FPA, the same' . .
µ

procedure to obtain an equilibrium of FPA' can be applied to marg ' and we see that any Nash.

equilibrium of FPA' is equivalent (induces the same distributions over the valuation-bid couples)

to an equilibrium where one bidder always sends the message 1 and where the other bidders

always send the message 0.  For such an equilibrium, we can interpret the messages as bids in a

secondary second price auction used to break possible ties.  Notice that in this auction, the second

highest bid and thus the bidders payments are always equal to 0.  Maskin and Riley (1996a) call a

similar tie breaking rule the Vickrey auction-tie breaking rule.

 :  The value at L is equal to the value over w ,w .(
7" 7Ò Ñ

 :  At d, F , ,F  are left-differentiable.)
" 8á



 :  The requirement v 0, for all v in c,c , implies that G /G  is strictly increasing*
" #

d
dv G

G"

#
Ð Ñ  Ð  Ó$

over c,c  and that conditionally on v c,e  the distribution G  first order stochasticallyÐ  Ó − Ò Ó$ "

dominates G  (strictly), for all e in c,c .# Ð  Ñ$

 :  Actually, in Lebrun (1996) it was already shown that this strict ranking holds true for an"!

open set of parameters ,  including the set of couples of ,  such that 1/2.Ð Ñ Ð Ñ  # $ # $ #$

 :  Notice that the subset of couples of distributions satisfying B or C is everywhere dense in""

ŒÐÒ ÓÑ Ð Ñ0,1  and thus that any open neighborhood of F ,F  has a non-empty intersection with this#
" #

subset.

 :  Here, we mean the natural variant for bidder i's expected payoff conditional on v , that is, the"#
3

variant whose value at v  is equal to the value of the variant of the conditional expected payoff if3

F  was concentrated at v .3 3

 :  Under assumption A, if two valuation distributions are equal, so are the bid functions (see"$

Corollary 3 (iv) in Lebrun 1997a or Corollary 4 (iv) in Lebrun 1997b).

  :  Where, for example, c 0 and L 2."% œ œ

 :  As mentioned in the proof of Lemma 4, this method of proof is similar to the method"&

followed in Lebrun (1996).  A method identical to the method in Lebrun (1996) would here rely

on (using the notation from the proof of Theorem 2 in Lebrun 1996) N  equal to the set of
3

strategies which do not submit any mass point b b  of the highest bid from the other biders2 Á

following  for a strictly probability set of v b  and which send the message 1 always.3 3 2Á

except when the submitted bid is equal to b , in which case the message sent is 0, for i j, and on Á



N  equal to the set of strategies which do not submit any mass point different from b  of the
4

distribution of the highest bid from  for a strictly positive probability set of valuations.4

different from this point and which always send the message 1.  Here, we rather use a similar

method which is equivalent to using (in the notation of the proof of Theorem 2 in Lebrun 1996)

N  which is the set of strategies which always send the message 0, i j, and N  which is the set 
Á3 4

of strategies which always send the message 0 and to applying the obvious variant of Lemma 4 in

Lebrun (1996) where assumption 1. is replaced by the assumption that, for all 1 i n and forŸ Ÿ

all R , we have sup Q , Q , .
A

/ ( . / .
(

3 3 3 3 3 3 3 3

3 3

− Ð Ñ   Ð Ñ
−

 :  If J 1, ,n , the probability is equal to 1.  If J 1, ,n , the inequality follows from"' œ Ö á × Á Ö á ×

the fact that b   b  with a strictly positive probability, for all i J and j J.3 4 Â −

 :  Obviously, such a sequence exists."(
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