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Continuity of the First Price Auction Nash Equilibrium Correspondence

1.Introduction

One item is being sold at auction to n bidders whose valuations are private and independently
distributed. We consider the first price auction, where the highest bidder is awarded the item and
pays his bid. This auction procedure is considerably more difficult to study than the English
ascending oral bid auction which is equivaent (in this “Independent Private Vaue" or [PV
model) to the second price or Vickrey auction, where the highest bidder is till the winner but
pays the second highest bid. For the first price auction, it is only in the symmetric case where the
bidders valuations are identically distributed that there exists a general mathematical formula for
the Bayesian equilibrium strategies. Nevertheless, analytical results pertaining to the general
(asymmetric) case have started to emerge in the literature (Athey 1997, Griesmer et al 1967,
Lebrun 1997, 1998, Marshall et al 1994, Maskin and Riley 1996 a and b, 1998, Plum 1989,
Thomas 1997, Vickrey 1961, Whaerer 1997). Because of its complexity, authors have also
searched to gain insights into the asymmetric case by computing numerical estimates of the
equilibria for some particular probability distributions of the valuations (Athey 1997, Dalkir et al

1998, Li and Riley 1997, Marshal et al 1994, Maskin and Riley 1998).

Obviously, the more robust the theoretical results are to deviations from the assumptions
on the valuation distributions the more worthwhile they are. It is thus natural to ask whether
some results which are known to hold true for particular n-tuples (Fy,...,F,) of valuation
distributions would still hold after slight perturbations of these n-tuples. For example, in Lebrun
(1998) it is proved that if there are only two different distributions G; and G, in the n-tuple of
valuation distributions, that is, if there exists m such that F; = G, for 1 <i <m, and F; = Gy,
for m+ 1 <j <n, then if Gy, for example, is replaced by 51 such that, by using the same

notation for the cumulative distribution functions, d/idv G ;(v)/G;(v) > 0, for al v, then the



new equilibrium bid probability distributions will strictly (first order) stochastically dominate the
old ones. As a particular consegquence, the auctioneer's expected revenues will increase. An
assumption for this result is that G, dominates G, ina strong sense (it is equivalent to the strict
first order stochastic dominance between the conditionals over al intervals of the form |[c,g], with
e > ¢ and where c is the common minimum of the supports of G; and G 1)- Will the auctioneer's
expected revenues dtill increase if G; is replaced by a distribution H; which without satisfying
this strong assumption is “close enough”, in the sense of the weak topology, to G ,? Since the
auctioneer's revenues is a continuous function of the bids (the maximum), the answer to this
guestion is yes if the Nash equilibrium of the first price auction depends continuously, for the

weak topology, on the valuation distributions. Here, we show that thisisindeed the case.

Clearly, the numerical estimates would be of very little use without this continuity of the
Nash equilibrium. In fact, they would be relevant only for the particular and more or less
arbitrary choice of valuation distributions and would be of no value even for small perturbations

away from these distributions.

It is known that a Nash equilibrium of the standard first price auction does not aways
exist. Changing the rules regarding the breaking of the ties allows to recover the existence of an
equilibrium.  Without access to the bidders private information and thus using only the
information they willingly provide, this can be done in several ways that we present in Section 2.
They all give equilibria that would aso result if the tie breaking rule directly used the bidders
valuations by allocating the item to the bidder involved in the tie with the highest valuation. In
Section 3, we investigate the relationships among this “technical” variant (not an auction, strictly
speaking) and all the other variants, where the valuations stay private. In particular, one of these
other variants is shown to be equivalent to the technical variant. In Section 4, we prove the upper
hemicontinuity of the Nash equilibrium correspondence of the technical variant and apply it to
prove the existence of an equilibrium for one of the other variants. The upper hemicontinuity

immediately implies the continuity when the correspondence is single-valued. In Section 5, we



gather assumptions under which the correspondence is single valued and thus continuous. As an
example of application, we use this continuity to prove that the property of “monotonicity”,
alluded to above, of the equilibrium bid distributions with respect to the valuation distributions
when there are only two different valuation distributions does not extend to n-tuples of valuation
distributions with more than two different distributions even under all the regularity assumptions
of Lebrun (1998). Section 6 isthe conclusion. Details of te proofs can be found in Appendices 1

to 3.

2. Several First Price Auction Games

We work within the model described in Lebrun (1996). An itemis being sold in an auction with
n bidders. We denote bidder i's valuation of the item by v; . The n-tuple of valuations (v, ...,
v,,) is chosen randomly according to an n-tuple of independent probability measures (F, ...,
F.). Only bidder i is informed of v; and submits' a bid at least as large as the minimum

allowable bid? ¢ . The bidders are assumed to be risk-neutral.

Asin Lebrun (1996, Assumption A), we assume that the support of F; is compact and
included in [c,L], where L is strictly larger than c. Since at any equilibrium we might define
bidders will not bid above L, for the sake of simplicity we introduce the rule that every submitted
bid must not be larger than® L . We denote by M([c,L]) the set of probability measures over

[cL]. Wethushave (Fi,...,F,) € M([c,L])".

We consider the first price auction game FPA = (S,P) as defined in Lebrun (1996). It
is the standard first price auction game where the highest bidder wins the item and pays his bid,
the other bidders do not pay anything, and ties are broken by a fair lottery. A strategy o; of
bidder i is a probability measure over [c,L]> = [c,L]; x [c,L], such that its marginal distribution
o1 over the first component space [c,L]; isequal to F;. A conditional distribution o;5(. | v;) over

[c,L], with respect to v; in [c,L]; is the probability distribution of the bid b; when bidder i's



valuation is v;. We denote the set of strategies o; by S; and the product S; x ... x S, by S.
Consistent with the assumption of risk-neutrality, the value P;(oy,...,0,,) of the payoff function
of bidder i a a n-tuple of strategies (o4,...,0,) is the expected vaue of p;(v;,b;,...b,) with
respect to the measure oy ® ... ® o, over ([c,L]; x [c,L]z)". Thevauep;(v;,by,...b,) is bidder

i's expected payoff when his valuation is v; and the submitted bids are (by,...b,). Itisequal to 0

if b; <1 <m];':\x< b, and to #H(‘g]*b'fb 7 where #H(by,... b,) is the number of highest bidders, if b;
<k<n e

= max_b,. Wedenote by Pthe function (Py,...,P,).
1<k<n

We also consider several variants of FPA = (S,P) which differ according to the way
ties are broken. Thegame FPA = (M,P ) isthefirst price auction game where bidder i is asked
to send a message m; € [c,L| together with the bid b; he submits. In case of a tie between
several highest bidders, the highest bidder who has sent the highest message among the highest
bidders wins the auction. If there are several such highest bidders, the winner is chosen among
these bidders according to a fair lottery. A strategy of bidder i is a probability measure over
[c,L]*=[c,L]; x [cL]s x [c,L]3 whose marginal distribution over the first component space is
equal to F;. The third component space is the message space. We denote the set of strategies of
bidder i by M;, the payoff function of bidder i by P ;, the product M; x ... x M, by M, and
the function (P 4,...,P,) by P. The complete formal definition of this game can be found in

Lebrun (1996).

The game FPA' = (S',P) is the game where as in (M,P ) each bidder has to send a
message along with his bid and the winner of the auction is chosen among the highest bidders
who have sent the highest message among the highest bidders. However, in this game the
message simply belongsto {0,1}. In asense, a message equal to 1 means that the bidder wants to
stay in the auction in case of atie and a message O means that the bidder is ready to drop out in
case of a tie A dtrategy of bidder i is now a probability measure over

[c,L]? x {0,1}=[c,L]; x [c,L]> x {0,1} whose margina distribution over the first component



spaceis equal to F;. The third component space is again the message space. A formal definition

of FPA' = (S',P") would proceed along the lines of the definition of FPA = (M,P).

The game FPA = (S,P ) is the variant defined in Lebrun (1996) where bidders only
submit bids, asin FPA = (S,P), and where the winner of the auction is chosen among the highest
bidders with the highest valuations among the highest bidders. Again, in case of severa such
bidders a fair lottery determines the winner. Bidder i's payoff functionp ;(v1,...,V,,b1,...,by)
whose expectation is equal to P ; is now a function of the whole vectors of valuations and bids.
As noticed in Lebrun (1996), strictly speaking FPA = (S,P ) cannot be implemented as an
auction since determining the winner requires information which is private to the bidders. Asin
Lebrun (1996), FPA = (S,P ) is atechnical tool which is useful in the proof and presentation of
the results. Moreover, we will see in Theorem 1 in the next section that, as far the as the
valuation-bid distributions are concerned, its set of equilibria and the set of equilibria of the first
price auction game FPA with the large set of messages coincide, for all n-tuples of valuation

distributions.

In order to make explicit the dependency of all these games on the valuation
distributions, we sometimes write (F;, ..., F,) as an argument. For example, FPA(F4, ..., F,)
= (S(Fy, ..., F,),P) is the standard first price auction game FPA = (S,P) when the valuation
distributions are (Fy, ..., F,). Notice that the payoff functions P, P, P, and P of all games

described above take their values in the compact [c — L,L — c]".

LetT" = (X,II) be one of the first price auction games defined above, that is, I' = FPA,
FPA, FPA', or FPA. The Nash equilibrium correspondence of the game T' is a correspondence
from M([c,L])" to the set of n-tuples of strategies, which isincluded in M([c,L]?)" in the cases of
FPA and FPA, M([c,L]?)" in the case FPA, and M([c,L]? x {0,1})" in the case FPA". Itsvalue at
(Fi, ..., F,) isthe (possibly empty) set of the Nash equilibriaof T'(Fy, ..., F,), that is, the game
I" when the valuation distributions are (Fy, ..., F,). All measure spaces are endowed with the

weak topology and all products with the product topology. We denote the Nash equilibrium



correspondence of FPA by A/, of FPA' by A", of FPA by N, and of FPA by N and their graphs
by orA, orN', ngA\J/ , and N, respectively. Moreover, we denote the images of these
correspondences by imAN/, imN*, imK/, and im\ . For example, gr\ isequal to { (Fy,...,F,.u)
| (Fp,...,F,) € M([cL])"and p € N(Fy,...,F,) } and imN isequa to { i | there exists

(Fi,...,F.) € M([c,L]?)" suchthat u € N(Fy,...,F,) }.

3.Relationships Between the First Price Auction Games.

Lebrun (1996) showed that any equilibrium of the technical variant FPA can be extended to an
equilibrium of the first price auction FPA with the large set [c,L] of messages, that is, /A\J/ -

margo N or N (Fy,...,F,) € margo N (Fy,...,F,) = {p € M([cL]?)" | thereexists 7z in
N (Fi,...,F,) such that = margz }, for dl (Fy,...,F,) in M([c,L])", where marg is the
function whose value at a measure in M([c,L]?)" is its margina distribution over the first two
component spaces. We also denote by marg the similar function whose domain is
M([c,L]? x {0,1})". From statement (i) in Theorem 1 below the reverse inclusion holds true and
N = margo . Thus, even if the technical variant FPA is not strictly speaking an auction all

its equilibria and only those can be implemented as the equilibria of the auction FPA whose rules

of alocation only makes use of the information supplied by the bidders.

Statement (i) also implies that any equilibrium of any of the first price auction games
determines an equilibrium of the technical variant FPA and thus of the variant FPA with the large
message space. The first inclusion in (i) means that if ¢ is an equilibrium of the standard first
price auction FPA where only the bids are used to determine the winner, then it is aso an
equilibrium of the first price auction FPA' where in addition to their bids bidders send messages
in {0,1} indicating their willingness to win a possible tie. Furthermore, statement (ii) implies that
the payoffs at an equilibrium of any game agree with the payoffs in the technical variant. Notice

that the two inclusionsin (i) arein general strict inclusions®.



The set U in (iii) is the set of probability distributions over [c,L]? whose supports lie
below the main diagonal, that is, &/ = { x € M([cL]?) | u({(vb) € [cL]*|b<v}) = 1}
Thus the value of the correspondence JA\J/ NnU", for example, at an n-tuple (Fy,...,F,) is the set
]\v/(Fl,. ..,F,) NU"™ of Nash equilibria y of FﬁA(Fl,. ..,F») such that every bidder almost surely
submits bids not larger than his valuation. From statement (iii) in Theorem 1 below, if we
consider only the equilibria where the bids are smaller than the valuations with probability one
then the two variants F'I:V’A, FPA, and the first price auction FPA' with the small set {0,1} of
messages give the same bid distributions. From statement (iv) in Theorem 1, for dl (Fy,...,F,)
such that ¢ belongs to the support of al distributions F,... ,F, bidders never bid strictly more
than their valuations with a strictly positive probability in any equilibrium of F'I:V’A(Fl, vy Fn),

that is, N (Fy, ..., F) C U™

Theorem1: According to our definitions, we have

(YN C margo N' C KJ/ = margo N,

(”)E‘) omarg | imN T P |7Lm/T/’ﬁ ornarg|im/\/' =P | im/\/'vﬁ |im/\/ = P|im/\/

(i) N nU" = (margo ') NU"

(iv) N = (margo N') CU", over the set {(Fi,...,F,) € M([c,L])" | c € SuppF;, for all

1<i<n},

Proof: See Appendix 1.

The method of proof of Theorem 1 is similar to the method followed in Lebrun (1996).
First, we show (in Lemma 1) that for al equilibrium of any of our first price auction games, any
bidder involved in atie at abid b' with a strictly positive probability for valuations strictly smaller

than b' must have a zero probability of winning the tie. If he did not, he would do better by



submitting a smaller bid. Similarly, a bidder involved in a tie at b' with a strictly positive
probability for valuations strictly larger than b' must win the tie with probability 1. If he did not,

he would do better by submitting alarger bid.

Next we prove (in Lemmas 1 and 2) that for al Nash equilibrium 4 of any of the first
price auction games above, if thereis a strictly positive probability of atie it must be at the lower

extremity of the support of the highest bid, that is, at b = max minSuppu;2 and there exists a
(3

bidder j which bidsb with a strictly positive probability for (a set of strictly positive probability
of) valuations not smaller than b and such that any other bidder i which bids b with a strictly
positive  probability does so for vauations not larger than b, that s
margo pi([b ,L] x {b }) > 0and margo p;((b,L] x {b}) =0, for al i # j such that bidder i
submits b with a strictly positive probability. The existence of such a bidder j at any tie
(occurring with a strictly positive probability) follows easily from the observations in the
previous paragraph. The only possible tie must be at b' = b otherwise there would be at least
one bidder i as above, that is, bidding b' for valuations not larger than b', who would be better off
by submitting a smaller bid. Moreover, we prove (in Lemma 3) that if there exists a bidder i
which submits b with a strictly positive probability for a set of strictly positive probability of
valuations strictly smaller than b, there is a bidder j as above which amost surely does not
submit bids srtictly smaller thanb . In fact, if there did not exist such abidder j there would be a
strictly positive probability of atie involving only bidders with valuations strictly smaller than b

and it would contradict the results of the previous paragraph.

In order to prove (Lemma 4) that margy is an equilibrium of FPA if 1 is an equilibrium
of any first price auction game I" = (X,IT), we notice that the payoffs IT andP are equal at p. If
there is a zero probability of atie this follows from the equality of = (IT is the expectation of =)
andP outsideties. If thereisastrictly positive probability of atie, it is of the type described in
the previous paragraph. At thetieb , the payoffs arethe sameinT asin FPA sinceif bidder i is

involved in the tie with a strictly positive probability for valuations strictly smaller than b then



with probability one bidder j with a valuation strictly larger than b is involved in the tie,
resulting in a probability O of winning the tie for bidder i in FPA and in T (see the initia
observations above about the probability of winning a tie depending on how the valuation
compares with the bid). Similarly, if there isabidder j which isinvolved in the tie with a strictly
larger valuation than b , with probability 1 all other bidders involved in the tie have valuations

not larger than b and bidder j winsthe tie with probability 1 in FPA andinT.

We then observe that if 1 was not a Nash equilibrium of FPA., there would exist a bidder
k and a strategy ¢, in S such that P ,(Cipir) > P () = ITi(1). However, for al € > 0 we
can find a strategy ;. in S which gives bidder i against p—; a payoff not smaller than
P +(Copi—r) by more than e, that is, such that Py (i) > P #(Copt—i) — €, and such that
(k- ) involves amost surely no tie. For al bid b’ where there is a strictly positive probability
of atie, it suffices to alter ¢; dightly by submitting a smaller bid when bidder k's valuation is
smaller than b' and by submitting a larger bid when bidder k's valuation is larger. Sincep and 7
agree outside ties, we have P k(Mepi—r) = Wy (nr,pe—r) and if we choose e > 0 small enough we
would have II;(n,pu—r) > Ii(w), which is impossible since 1 is a equilibrium of T.
Consequenity, margo N/ C N and thus (the reverse inclusion was proved in Lebrun 1996)

N = margo N. Weaso haveprovedtheinclusions/\/’gxf and margo N' C N aswell as

the equalitiesin (ii) stating that the equilibrium payoffs are the samein all gamesasin FPA.

In order to prove (iii), it now suffices to prove (Lemma 6) the inclusion N aur -
margo N". Let i be an equilibrium of FPA such that almost surely bidders submit bids not larger
than their valuations. If thereis a strictly positive probability of atie then any bidder i # j, asin
the previous proof, which isinvolved in the tie with a strictly positive probability can bidb with
a drictly positive probability only when his valuation is equal to b, that s,
wi(([cL]Mb }) x{b}) =0, forali+#j. Inthiscaseif x'isthe n-tuple of strategiesin S' such
that margy' = p, p'; dways sends the message 1, and 1., always sends the message O, for all

k # j, we can show by using the same arguments as above that ' is a Nash equilibrium of FPA'.



Because no bidder involved in the tie at b has strictly smaller valuations than b and thus since
al bidders involved in the tie have their valuations equal to b except possibly one, bidder j,
whose valuation can be strictly larger than b , the messages 0 and 1 suffice. The same bidder,
bidder j, is the bidder who has to win the tie no matter who the other bidders involved in the ties
are. It was because this was not the case in the three bidder example of footnote 4 that we needed
alarger message space’. If 1 implies a probability zero of atie, any n-tuple ;' of strategiesin S'
such that margy' = . is a Nash equilibrium of FPA'S. We can similaryly prove (Lemma 5) the

incluson N C margo N"in (i).

Proving (iv) in Theorem 1 is now equivalent to proving N CU" over the set
{(Fy,...,F,) e M([c,L])" | c € SuppF;, foral 1 <i < n}. First we notice (Lemma7) that if . is
a Nash equilibrium of FPA for an n-tuple of valuation distributions in this set then ¢ € Suppy;2,
foral 1 <i < n, that is, the support of the bid distribution of every bidder includes c. Otherwise,
there would exist some bidders who would bid almost surely above ¢ + ¢, with e > 0, and at least
one bidder would experience strictly negative payoffs for valuations in [c,c + ¢) while he can
always obtain at least zero (by submitting his valuation). This property implies (Lemma 8) that
any bid dtrictly larger than ¢ from any bidder has a strictly positive probability of winning.
Consequently, no bidder will bid strictly higher than his valuation since it would result in a

strictly negative payoff.

4.Upper Hemicontinuity

In Lebrun (1996, Lemma 1 p. 430), we showed that under our assumptions there always exists an
equilibrium of FPA and thus of FPA. Equivalently, the Nash equilibrium correspondencej?/ =
marg o A/ has non-empty values. Theorem 2 below states that the graph of this correspondence

is closed.



Theorem 2: The Nash equilibrium correspondence N = marg o A/ has non-empty values and

itsgraph is closed. Moreover, the payoff function P is continuous on the image im\” of \V.

Proof: See Appendix 2.

Since M([c,L]?)" is compact, Corollary 1 below follows immediately from Theorem 2 (see, for

example, Duffie 1988, exercise 19.2 (B) p.199).

Corollary 1: The Nash equilibrium correspondence/?/ isupper hemicontinuous.

The statement in Corollary 1 meansthat { (Fy,...,F,) € M([c,L]*)" | K/(Fl,... JF,) C O}is
open, for al openset O C M([c,L]?)". The statements in Theorem 2 mean that for all sequence
(Fi,.. . )FL)s1 in M([c,L]?)" which converges weakly towards (Fy,...,F,), if (u');s; is a
sequence in M([c,L]2)" such that ' is a Nash equilibrium of FPA(F.,...,F), that is,
ut e K/(Fll,...,Fﬁl), for al | > 1, and which converges weakly towards ;. then ;. is a Nash
equilibrium of FPA(F,....,F,), that is, u € N (Fi,...,F,) and moreover P (;!) tends towards

P (1)

Although the limit of Nash equilibria of the standard first price auction FPA may not be
an equilibrium of the same auction game, from Theorem 1 (i) and the upper hemicontinuity of N
stated in Corollary 1 the limit is a Nash equilibrium of the technical variant FPA and it can be
extended to an equilibrium of the first price auction FPA with the large set [c,L] of messages used
in breaking the ties. From Theorem 1 (ii) and the continuity of B over im\ stated in Theorem
2, the payoffs in the standard auction will tend towards the payoffs in FPA and FPA. From
Theorem 1, Theorem 2, and Corollary 1 the same statements hold true with, instead of the

standard auction FPA, the auction FPA' with the small set {0,1} of messages.



The proof of Theorem 2 proceeds as follows. We consider any subsequence such that the
n-tuple of payoffs (I?’l,...,ﬁ 2)(p') is convergent. We first prove that in the game

FPA(F,,...,F,) bidder i cannot obtain a higher payoff than thelimilt |iJrrn P (1)) of his payoffs
g (0. ¢]

in the converging games. In fact, if it was the case there would exist a strategy 6; which would
give bidder i against ._; in the game FﬁA(Fl,. ..,F,) apayoff larger by a certain strictly positive
number § > O than his equilibrium payoffs and thus any payoffs he can obtain against ;! ; in the

games FE’A(FQ,. ..,F,), for al | large enough. That is, there would exist §; such that

@) Biipu) > Pl + 6,

for all | large enough and for all strategy v/ of bidder i in FPA(F,,...,F.). However, aswe show
in Lemmas 11 and 12 (Appendix 2), for all ¢ > O there exists a function ¢; of v; such that the
strategy of bidder i consisting in bidding according to this function is an e-best response to x.—; in
the game FPA(Fy,...,F,) and gives expected payoffs against /i ; in the games FPA(F.,... ,F.)
which tend towards the expected payoff against ;._; in the game FﬁA(FI,. ..,F»). The existence
of such a function for e < § rules out the existence of 6; since (1) would imply P ;(6;,u_;) >

Pi(Gl,) + 6, whilethelimit of P (¢l ;) isnot smaller than P ;(6;,1_;) — e. The function
¢; is astep function constructed by taking an increasing finite sequence ¢ = wy, Wy, ..., W,, = L
of valuations in [c,L] which are not mass points of ;;; = F; and such that the distances between
two consecutive elements are small enough and by defining the constant value of (; over’
[wy._1,w}) as abid which is not a mass point of the highest bid from the other bidders using z:—;
and which is a e-best response to 1—; when bidder i's valuation is equal to wj,_;. Such a bid
exists for all k > 1 since if it happens that an e-best response bid is equal to a mass point of the
highest bid of ;._;, that is, there is a strictly positive probability of atieif thisbid is submitted, it
suffices to change it dightly to find a suitable bid. Following this procedure, we can construct a

“bid function" ¢; such that the set of discontinuities of bidder i's payoff p; (v;,(i(vi).v_;,b_;)



when he follows ¢; hasa uy ® 1y = F; ® pu_; measure equal to 0 and such that the strategy it
determines in F'FV>A(F1,... ,Fn) is an e-best response to p—;. Such a function ¢; fulfills our

reguirements.

The second part of the proof consists in showing that bidder i can obtain at least the limit
of his equilibrium payoffs by playing the limit p; of his equilibrium strategies, that is, that

Pip) > , IiJrrn P i(1'). Thisinequality isan easy consequence of the first part of the proof
- o

and the property of upper semicontinuity of the sum of the payoffs Y "p , which implies the upper
i=1

semicontinuity with respect to v in M([c,L]?) of 215 i(v). Infact, if thisinequality did not hold
i=1
true, as ;! tends towards . the sequence P ; (1) would exhibit a “jump down" to P ;(x). Since

;ﬁi can never exhibit a “jump down", there would exist at least one j # i such that P ;(u!)

would jump up to P ;(). Thisisimpossible from the first part of the proof and this completes
the proof of the closedness of the graph. Finally, in the course of this proof we showed that the
limit of any convergent subsequence of (P (1)1 is equal to P (). The statement about P in

Theorem 2 then follows.

A first consequence of the upper hemicontinuity of N is Corollary 2 below stating, for
al (Fy,...,F,) in M([c,L])", the existence of an equilibrium of FPA(F....,F,), or equivalently
(see (i) in Theoreml) of FPA(F;,...,F,), where bidders do not bid higher than their valuations
with a strictly positive probability. From (iii) in Theorem 1, it is equivalent to stating that there
exists such an equilibrium of the first price auction FPA'(F,...,F,) with the set {0,1} of
messages or that the correspondence Ny = (margo N') NU" has non-empty values.
Notice that it implies that A" has non-empty values and thus that there always exists at least a

equilibrium of FPA'".

Corollary 2: The correspondence Nour = (marg o A') NU™ has non-empty values.



Proof: See Appendix 2.

To prove Corollary 2 it suffices to approximate any (F,...,F,) by asequence (Fi,...,F.);>; such
that ¢ belongs to the supports of F, ..., F., for all |, and to apply Theorem 1 (iv) and the upper

hemicontinuity of N (Corallary 1).

5.Continuity

The upper hemicontinuity of N = marg o N immediately implies its continuity over any set of
n-tuples (F,...,F,) where N is single-valued. Examples of assumptions under which N is
single valued can be found in Lebrun (1997 a, b, and 1999). These papers consider the case
where the continuous from the right variants of the valuation cumulative distribution functions,

which we also denote by F,.. . ,F,, satisfy Assumption A below:

A. Fi,...,F, have their supports equal to the same interval [c,d], with ¢ < d, are differentiable®
over (c,d], and are such that their derivatives — the density functions fy,... f,, — are localy

bounded away from zero over (c,d].

The resultsin Lebrun (1997 a, b, and 1999) about the characterization, existence, and uniqueness
of the Bayesian-Nash equilibrium under mandatory and voluntary bidding can easily be shown to
imply that the Nash equilibrium (as we have defined it in the present paper) of FﬁA(Fl,. .,Fn)is
unique, that is, N and thus (from Theorem 1 (iv) and (iii)) marg' o A" are single-valued at

(F1,...,F,) under any of the following assumptions :

B. In addition to Assumption A, F;(c),...,F,(c) > 0, Fy,...,F, are right-differentiable at c, and

the derivativesfy,... ,f, are bounded away from zero over [c,d].



C. In addition to Assumption A, F;(c),...,F,(c) = 0 and there exists 6 > 0 such that F,... ,F,

are strictly log-concave over (c,c+ 6).

D. In addition to Assumption A, there exists 1 < m < n and two distributions G; and G,
absolutely continuous over [c,d] such that F; = G, for 1 <i <n, F; =Gy, for m<j <n, and
there exists § > O such that & & (v) < 0, foral vin (c,c+ ).

dv Gg

E. Inadditionto Assumption A, F, = ... = F,.

In Assumption B, ¢ is a mass point of al distributions Fy,..., F,. In Assumption C, cisnot a
mass point af any of the distributions F;,... ,F,, and these distributions are strictly log-concave in
a (right) neighborhood of c. In Assumption D, there are up to two different valuation
distributions and there exists a relation of stochastic dominance’ between them in a neighborhood
of the lower extremity c. Assumption E describes the standard symmetric case. The uniqueness
under Assumption B follows from Corollary 1 in Lebrun (1997a) and under Assumption E from
Corollary 3 (v) in the same paper (or from Corollaries 2 and 4 (v) in Lebrun 1997b). The
uniqueness under Assumption C or D follows from Lebrun (1999). We thus have Corollary 2

below.

Corollary 2: Let S be a subset of M([c,L])" over which N is single valued. Then the
correspondence N = margo N is continuous over S. In particular, the correspondence
N = marg o A is single valued and continuous over the set of n-tuples (F4,...,F,) which satisfy
one or more of the assumptions B, C, D, E. Moreover, over this latter set marg' o N coincides

with ' = marg o N and is thus single valued and continuous.



Consequently, any numerical estimate (see references in the introduction) or any property of the
Nash equilibrium (see references in the introduction) for particular n-tuples (F,...,F,) is
somewhat robust to the choice of valuation distributions in the set of Corollary 2 and no “razor-
edge" effect can appear. For example, when n = 2 Lebrun (1996) analytically proves that the
seller's expected revenues are strictly larger at the unique equilibrium of the first price auction
than at the unique equilibrium in weakly dominant strategies of the second price auction for the
couples (F;,F,) of distributions over [0,1] such that F;(v) = v and Fo(v) = v?, for al v in [0,1],
with v6 > 1/2, and thus for any couples of distributions of maxima of uniformly distributed
independent random variables. Since the seller's expected revenues in both cases are the
expectations of continuous functions of the bidders strategies (as we have defined them here),
this ranking till holds true in the intersection of an open neighborhood'’of any such couple
(F1,F2) in M([0,1])? with the set of couples of distributions satisfying one or more of the

Assumptions!'! B, C, D, or E.

The upper hemicontinuity of N cannot only be used to extend properties, it can aso be
used to rule out some extensions. For example, Lebrun (1998) proves the result of comparative
statics stating that if the n-tuple of distributions is composed of up to two different distributions
and if one of these two distributions is replaced by a new distribution which dominates it
stochastically according to the relation of stochastic dominance introduced around ¢ in
Assumption C and if the equilibria of the first price auction before and after the change are
unique, then the new bid probability distributions first-order stochastically dominate the old
distributions and, in particular, the bid function of the bidders whose valuation distribution has
not changed will increase. We first remark (see Theorem 1 in Lebrun 1997a and Theorems 1 and
2 in Lebrun 1997b) that under Assumption A, at an equilibrium of any first price auction game
(among FPA, FPA, and FPA") bidder i's bid probability distribution conditional on the valuation
v; is concentrated at one point denoted by 5;(v;), for al 1 <i < nand F;-almost all valuation v;.

Any equilibrium, as defined in this present paper, is thus determined by an n-tuple of bid



functions unique F; ® ... ® F,- amost everywhere. The variant we take for such an n-tuple is
the n-tuple of bid functions defining a Bayesian equilibrium, that is, such that 3;(v;) maximizes
bidder i's expected payoff 2 when his valuation is equal to v; . We now state the result from
Lebrun (1998, Theorem A1) more precisely: for any two n-tuples of distributions (F,... ,F,) and

(Fi,...,F) satisfying Assumption A such that thereexist 1 < m < nand G;, Gy, and G} with

2 £ <oforalvin(cd,

Fl=...=Fp,=F=...=F, =Gy, Fuyy=... =F, =Gy, F,,, =... =F =G}, and

m

such that the equilibria of FPA(Fy.... F,) and FPA(F,... F*) are unique, we have

M(V) > 7 (v),

forall vin (c,d], and

G3(657 (b)) < Ga(6;' (D)),

foral bin (c, v (d) = 82(d)], when (54,...,5,) and (55,...,5;) are the “bid functions" defining

the equilibria of FPA(Fy,...,F,) and FPA(F;,... ,F), respectively, with'3 3, = ... = 3,, = 7,
ﬁf = ... :5$L:7T'ﬁ7n,+l =... = [, = 0, and :L+1 = ... :5;2:55

We now show that this result of comparative statics does not generalize to situations
where the n-tuple of valuation distributions counts strictly more than two distributions. Actually,
we show that if (F_;F;) and (F_;F) are two n-tuples of valuation distributions satisfying
Assumption A with the same distributions F;, j # i, such that FPA(F_;,F;) and FPA(F_;,F) have
unique equilibria (5-;,5;) and (8*,,5;) (respectively), then the stochastic dominance of F; by F;

in the (strong) sense (2) does not imply in general that the probability distribution of the bid from



bidder j, j #i, in the equilibrium (3*,,3) first-order dominates this distribution in the
equilibrium (8_;,5;), nor does it imply that the probability distribution of the highest bid from the
bidders j, j #1i, in the equilibrium (3*,,5) dominates this distribution in the equilibrium

—11

(6-:,08;)- Ingeneral, we have

(3) & & (v) <0, foralvin (cd],
doesnotimply ;(v) > p;(v),foralvin(cd andj # i,

does not imply [IF;(8; ' (b)) < TIFi(B;'(b), for &l b in
J# J#

(€A1(d) = ... = Bu(d)].

To establish this result, we first exhibit in the following proposition an example which does not
satisfy Assumption A but where the equilibria can easily be obtained and where a particular
increase of a bidder's valuation distribution does not result in increases of the probability
distributions of the bids from the other bidders. Following standard lines, it is not too difficult to

prove Proposition 1 below (simultaneously with Proposition 2 in Appendix 3).

Proposition 1: Consider the example with 3 bidders where bidder 1's valuation is equal to O with
probability p and 1 with probability 1 — p, bidder 2's valuation is equal to O with probability q
and 1 with probability 1 — q, and bidder 3's valuation is equal to x with probability 1 with 0 < p,
g<1landO< x< 1. Without loss of generality, we assume that g > p. Then there exists one
and only equilibrium (py,pa,u3) of FﬁA(Fl,Fg,Fg)“. We denote by I, J, and H the cumulative
distribution functions of the equilibrium bid distributions, that is, the marginals over the bid
space of uq, po, and us, respectively. If x > % the supports of the equilibrium bid

distributionsare asin Figure 1, and

J(b) = 1(b) =H(b) =1, foralb >17



J(b) = I(b) = W andH(b) = 1, for bin RangeA, that is, for bsuchthatb < b < 7,
1/2

J(b) =1(b) = (%) and H(b) = 2(1 — x)/2 X222 for b in Range B, that is, for b such that

b <b<b,

J(b) =q,1(b) = 2, and H(b) = % for bin Range C, thatis,0< b < b,

where

n = 1-2(pgx(1—x)"2,b =2x—1,andbh = 422X,
[FIGURE 1]

In Figure 1, the vertical lines represent the supports of the bid distributions and the full dots
represent possible mass points. In the example of Proposition 1, assume that x > quq and
consider F; corresponding to g* such that g* < g and thusx > p:;q Let (1,JH) and (I*,J",H")
be the equilibrium bid cumulative distribution functions when the valuation distributions are
(F1,F2,F3) and (Fy,F3,Fs), respectively. Then, from the proposition above we see that H*(b) =

2(px(L = x)2/(a!* (1= b)) > H(b) = 2(px(1—x))"/*/(q"/*(1~ b)) and I"(b)H(b) =

2px(1—x)'/2(g*>(1 = b)(x — b)) > I(b)H(b) = 2px(1 — x)"/2/(g"/*(1 - b)(x — b)), for all
bin(0b = “T ) and we thus have an example where the probability distributions of the bid
from another bidder and of the highest bid from the other bidders do not stochastically increase
after a stochastic increase of the valuation distribution of bidder 2. The bid probability
distributions of bidder 3 and of the highest bid from bidders 1 and 3 before and after the change

cannot be stochastically ranked.

In order to prove the existence of such an example with valuation distributions satisfying
Assumption A, all with mass points at ¢, thus satisfying Assumption B, and with the relation of
stochastic dominance introduced in (2) between F, and F;, it suffices to construct sequences

(Fin)n>1, (Fon)n>1, (F5,)n>1, and (Fs,),>1 of valuation distributions with these properties and



which converge towards the distributions F;, Fo, F5, and F; (respectively) of the previous
paragraph. First take a sequence of functions g,, from [0,1] to (0,1] which converges towards
Fi/F, and such that g, is differentiable with a strictly positive derivative over [0,1], for al n > 1.
Then take sequences (Fi,,)n>1, (Fon)n>1, and (Fs;,),>1 of distributions satisfying assumption A
with [0,1] = [c,d] such that F,,,(0) > O, F»,(0) > 0, and F3,,(0) > 0, for al n, and thus satisfying
Assumption B. Then, the sequences (Fi,)n>1, (Fon)ns1, (Fyy = F2nGn)ns1, and (Fsp),s1 will
display the required properties. Let b be a bid in (Ob = %x). Let I,,, J,, H, be the bid
cumulative distribution functions at the unique equilibrium when the valuations distributions are
Fin, Fon, and F3, and let 17, J:, H be the bid cumulative distribution functions at the unique
equilibrium when the valuations distributions are F,,, F,,, and Fs,,, for al n > 1. Then, from the
upper hemicontinuity of N stated in Corollary 1 and thus its continuity over S = { (Fy,,, F3,,,
Fsn)s (Fin, Fon, F3n) IN>1} U { (Fi, R, F3), (F1, 5, F3) } there existsm > 1 such that H (b)
> H,(b) and I’ (b)H!(b) > 1,(b)H,(b), for al n>m. Remark that for n > m, the first
inequality implies the existence of a neighborhood of b over which 35! > 3;! and thus of a
neighborhood of 3;,*(b) over which 33, < 33, Where 33, and (3}, are bidder 3's equilibrium bid

functions when the valuations distributions are Fy,,, F,,, F3,, and Fy,,, F,,, Fs,, respectively.

6. Conclusion

We proved the continuity of the Nash equilibrium of the first price auction in the independent
private value model with respect to the valuation distributions and thus established the robustness
of theoretical results and numerical investigations about this auction procedure. We studied the
relationships among several variants of the first price auction and applied the continuity of the

equilibrium to disprove a conjecture of comparative statics.

Appendix 1.



Lemma 1: Let (F4,...,F,) bean-tuple of distributionsin M([c,L])". Let u= (p1, ..., pn) be @
Nash equilibrium of I'(F4,...,F,), where I" € { FPA, FPA, FrI5JA, FPA }. Letb' be a mass
point of the probability distribution of the highest submitted bid when the bidders bid according

to . Without loss of generality we can assume that there exists 1 < | < n such that

p2({0}) > 0,..., ua({b'}) >0,

pare({B}) = o = pe({b}) = 0, pp([eb]) > 0,..., p(leb]) > 0.

Thenfor all 1 <i < | suchthat margo u;([c,b’) x {b'}) > 0, we have

(A1) Prob ( bidder i wins | bidder i bidsb' andv; < b') = 0.

Ifl > 1andif margo u;((b',L] x {b'}) > 0, we have

(A2) Prob ( bidder i wins | b'isthe highest bid, bidder i bidsb'andv; > b') = 1.

Thereexistsj suchthat 1 <j <l and

(A3) marg o i ((b'L] x {b}) =0,forall 1<i<landi#]j.

When!| > 1, thereexists1 < j < | such that (A3) holds true and such that

(Ad) margo ;(bL] x {b}) > O.



Proof: If (A1) did not hold, bidding according to p and thus bidding b’ for a set of strictly
positive measure of v; < b' would contribute negatively to bidder i's expected payoff.
Submitting, for example, b = v; would strictly increase his expected payoff and ;. could not be an

equilibrium.

If (A2) was not true when | > 1, then for a strictly positive measure set of v;, submitting
abid b dlightly larger than b’ rather than b' itself would increase bidder i's probability of winning
discontinuously and would decrease his potential payment only continuously. His expected
payoff would then be strictly increased (for similar reasoning see Griesmer, Levitan and Shubik

1961).

If I =1, (A3) isimmediate. Consider thecasel > 1. The property (A2) implies that
there exists at most one bidder j, with 1 <j </, such that margo p;((b'L] x {b}) > O.
Consequently at least (I — 1) bidders bid b' for valuations not larger than b' and (A3) is proved.

Assume (A4) isnot true. Then for each j verifying (A3) (thereis at least one such j), we
have marg o p;([b'\L] x {b'}) =0. As a consequence we have margo 1;([b',L] x {b'})=0
and marg o u;([c,b) x {b'}) >0, foral 1 <i<I. This, however, contradicts (A1) and we

have proved that there existsj such that (A4) holdstrue. ||

Lemma 2: Under the assumptions of Lemma 1, if | > 1 we have

b' = max min Suppgio.
1 8 PPLLi2

Proof: Wedefineb asfollows

b max_  min Suppge.

<i1<n

|



b isthe minimum of the support of the highest bid. Let b'and| > 1 asin Lemmal. We must
provethat b’ = b . Sinceb'isamass point of the distribution of the highest bid, we have b’ >
b . Wemust thus prove the reverse inequality. When| > 1, we know from (A4) in Lemma 1 that
there exists 1 < j < | such that (A3) applies. There also exist (I — 1) other indicesi # j such

that
(A5) marg o 11;([c,b] x {b}) > 0.

We denote by V; the set of valuations v; not larger than b' for which bidder i bids b’ with a strictly

positive probability. V,; hasastrictly positive F;-measure.

Assume first that there exist such an index i # j and a subset W, of V,, of strictly
positive F;-measure and such that v; < b', for al v; in W;. Then, from (A4) we know that the
probability that bidder i winsif he submits b' and if his valuation belongs to W; is equal to zero.

Since alower bound of this probability is given by Prob (kmix_ b, < b')= ][] Prob(b, < b")
7 ki

= J] m2(lc, b)), we see that there exists k # i such that ux2([c, b)) = O, thatisb® < min
ki

Supp ke andthusb' < b,andb' =b.
Assume next that there does not exist an index i as in the previous paragraph. As a
consequence, any index i verifying (A5) is such that marg o p;({b'} x {b'}) > 0. . If it wasthe

casethatb' > b, wewould have [ ur2([c, b)) > [I wmr2([c, b)) > 0and there would exist
k#i 1<k<n

€ > Osuchthat Prob (kmix, b, < b —e)= ] ma([c,b'—¢€)) > 0. Bidder i's payoff when b'
i kot

is his valuation and when he submits b' — ¢ would then be strictly positive and would thus be

strictly larger than what he obtains if he submits b' as his equilibrium strategy prescribes. Thisis

impossibleand thusb' < b,andb' =b. ||



Lemma 3: Under the assumptions of Lemma 1, if | > 1 and if there exists 1 < i < | such that
wi([cb ) x {b}) > 0 then there exists 1 <j < n such that j # i and (A4) holds true and such

that ;.;2([cb )) = Oandthussuchthatb = min Suppy;2, whereb isasdefined in Lemma 2.

Proof: Sincel > 1, thereis astrictly positive probability of atie. From Lemma 2, we know that

the tie can only happen at b 1:<m,a>é min Suppue. Assume that for all j = i such that (A4)
<1<n

holds true we have pjo([cb)) > 0. Then there is a strictly positive probability that these
biddersj will not be involved in thetie. In fact, there is astrictly positive probability that, for all
such j, bidder j bids strictly lessthan b . Consequently, there is a strictly positive probability that
the bidders k involved in the tie will be such that (A4) does not hold true, that is, that
marg o yu;([b',L] x {b'}) = 0. Since u;2({b'}) > 0, al bidders k involved in the tie would be

such that 11 ([c,b") x {b'}) > 0. However, this contradicts (A1) and Lemma3is proved. ||

Lemma 4: Let (Fy,...,F,) bean-tuple of distributions in M([c,K])". Let u= (1, ..., uy) be @
Nash equilibrium of T'(F,...,F,), whereT' = (X,II) € { FPA, FPA', FﬁA, FPA}. Thenpisa

Nash equilibrium of FPA(F.,...,F,) and TI(p) = P (margp).

Proof: Let u= (u1, ..., 1n) be a Nash equilibrium of T'(Fy,...,F,). We first show that
IT; () -P ;(margp), for al 1 <i < n. Consider first the case where, in the notation of Lemma
1, | =1for al mass point b' of the probability distribution of the highest bid when the bidders
follow p. Then, according to . there is a zero probability of atie. Since w andp agree outside
ties, we have II;(u) -P ;(margp), for all 1 <i < n. Assume now that if p is followed there
exists a bid b' where there is a strictly positive probability of atie, that is, where (in the notation
of Lemma?2) | > 1. From Lemma2 we know that b' = b whereb isthe minimum of the support

of the highest bid i.e. b < <ma><< min Supppe. I there is a strictly positive probability that
<1<n

bidder i isinvolved in atie at b , breaking the tie will have the same result on his payoff in al



games. In fact, if bidder i bids b with a strictly positive probability for a set of strictly positive
probability of valuations v; < b Lemma 3 implies that with probability one a bidder j will be
involved in the tie with a valuation at least as large as b. From Lemma 1 for aimost all
valuations v; < b such that bidder i bidsb with a strictly positive probability he wins the tie in
T" with a probahility zero. The same outcome takes place in FPA since bidder j has almost surely
adtrictly larger valuation. If bidder i bidsb for his valuation v; = b , any way the tie is broken
in any game will give a zero payoff to bidder i. If bidder i bids b with a strictly positive
probability for a set of dtrictly positive probability of valuations v; > b, from Lemma 1 his
probability of wining the tie in those casesin I is equal to 1. From Lemma 1, any other bidder
involved in the tie has ailmost surely a valuation not larger than b . Consequently, in the game (S,
P ) he will also win the tie with probability one. Since the payoff p and = in both games only

differ at the ties, we have proved I1; (1) P ;(margu), foral 1 <i <n.

Suppose that there exists v; € S; such that P ;(v;,margu_;) > P ;(margw). Then, by
reasoning as in the proofs of Theorems 1 and 2 in Lebrun (1996) it is possible to show that for all
¢ > 0 there exists \; € S; such that P ;(\;,margu_;) > P ;(v;,margu_;) — e and following \;
bidder i does not bid with a strictly positive probability any mass point of the distribution of the
highest bid from the other bidders if they follow margo ;. For al bid b' where there is a
strictly positive probability of atie, it sufficesto ater slightly v; by submitting a smaller bid when
bidder i's valuation is smaller than b’ and by submitting a larger bid when bidder i's valuation is
larger. More precisely, let {b;, | h > 1} be the set of mass points of the distribution of the highest
bid from margy._;. Thisset isat most countable. For every by, in this set which v; submitswith a
strictly positive probability and for amost every valuation v; # b, for which v; submits by, it
suffices to bid dlightly above or under b, depending on whether v; > by, or v; < by, respectively,
to a bid which does not belong to {b;, | h > 1} (this change can be done in a measurable way).
By taking e > 0 small enough, we have P ;(\;,margu_;) > B ;(margy). Since  and P differ

only at the ties, we would have IT;(Af,u_;) = P (A margu_;) > IL(u) =P ;(margyu), where



Af is any strategy in X; whose marginal over [c,L]; x [cL]: is equal to A\;. However, p is an

equilibrium of T" and thisinequality isimpossible and we have proved Lemma 4. ||

Lemma 5: Let (F4,...,F,) bean-tuple of distributionsin M(([c,L])". Let = (p1, ..., pn) be @
Nash equilibrium of FPA(F,... ,F,). If ' isan-tuple of strategies in FPA'(Fy,...,F,) such that

margu' = p, then p'isa Nash equilibrium of FPA'(F4,... ,F,) and P'(1') = P(u).

Proof: Let 1 and p' be asin the statement of the lemma. We first show that P;'(1') = P;(u), for
al 1 <i < n. Consider first the case where, in the notation of Lemma 1, | = 1 for al mass point
b' of the probahility distribution of the highest bid when the bidders follow ;.. Then, according to
1w there is a zero probability of atie. Since p' and p agree outside ties, we have P;'(u') = Pi(p),
foral 1 <i < n. Assume now that if ; is followed there exists a bid b’ where there is a strictly
positive probability of atie, that is, where (in the notation of Lemma 1) | > 1. From Lemma2 we

know that b' = b where b is the minimum of the support of the highest bidi.e. b T <max< min
<1<n

Supppiz. If there is a strictly positive probability that bidder i isinvolved in atie at b , breaking
the tie will have the same result on his payoff in al games. In fact, from Lemma 1 if bidder i is
involved in the tie with a strictly positive probability it is almost surely when his valuation
v; = b and any way thetieisresolved in any game will give a zero payoff to bidder i. Since the
payoffs p' and p in both games only differ at the ties, we have proved P;(u') = P;(u), for all

1<i<n.

Suppose that there exists v;' € S;' such that P;'(v;',u—;") > Pi(u') = Pi(n). Then, by
proceeding as in the proof of Lemma 4 it is possible to show that there exists \;' € S;" with the
same property and such that following A;' bidder i does not bid with a strictly positive probability
any mass point of the distribution of the highest bid from the other bidders if they follow ;.

Since p' and p differ only at the ties, we would have P;(marg\;',u—;) = P'(\'p—i') >



P;(u') = Pi(n). However, 1 is an equilibrium of FPA and this inequality is impossible and we

have proved Lemmab. ||

Lemma 6: For all (Fy,...,F,) in M([cL])", we have /T/(Fl,...,F,l) nu" <

marg o N'(Fl,. .. ,Fn).

Proof: Let 1 be an element of A (F,...,F,) such that 1;({(v,b) € [cL]? |b< v}) = 1, foral
1<i<n. Frst consider the case where under 1 every mass point of the distribution of the
highest bid is played with strictly positive probability by no more than one (and thus just one)
bidder. That is, according to the notation of Lemmal, | = 1 for all mass point of the distribution
of the highest bid. Forall 1 <i <n, let 7 , beany strategy of bidder i in FPA" which induces the
same distribution over [c,L]? as u; does. Then proceeding asin te proof of Lemma4 it is simple

toprovethatw = (@ 4, ..., @ ,,) isaequilibrium of FPA'".

Consider now the case when under 1 there exists abid b’ where there is a strictly positive
probability of atie, that is, where (in the notation of Lemma 1) | > 1. From Lemma 2, we know

that b'=b whereb isthe minimum of the support of the highest bid, that is, b T <max< min
<1<n

Supppio. From Lemma 1, there exists 1 < j < | such that (A3) and (A4) hold true. Moreover,
here 1;({(v,b) € [cL]?|b<Vv}) = 1, for dl i, and thus u;([cb) x{b}) = O, for all

1<i<landp(([cL\{b}) x{b}) = O foral1<i<landi#]j.

For all i #j, let u;' be the element of S'; which induces the same measure over the
valuation-bid space [c,L]? and which always send the message O, that is, margu;' = p; and
wi(leL]* x {1}) = 0. Let u'; be the element of the element of S'; which induces the same
measure over the valuation-bid space [c,L]*> and which aways send the message 1, that is,
margu; = p; and p'([c,L]? x {0}) = 1. Then P (1) = P(w). Infact, p and p' agree outside
ties. If thereisatie itisamostsuredly aab=b. For1 <i <l andi # |, if bidderi bidsb itis

amost surely for v; = b and bidder i's payoff is the same no matter how the tie is solved. If



bidder j isinvolved in thetie, if v; = b theway thetieis solved does not matter. If v; # b , with
probability 1 we have v; > b and bidder j wins the tie with probability 1 in both games.
Consequently, we have P () =P(p'). Then showing that p' is a Nash equilibrium of

FPA'(Fy,...,F,) can proceed as in the proof of Lemma4'®. ||

Lemma 7: Let (Fy,...,F,) be an element of M([c,L])"” such that c € SuppF;, for all 1 <i <n,

and let 1 be an element ofK/(Fl,... JFrn). Thenc € Supppuiz, forall 1 <i <n.

Proof: Let b ; be the infimum of Suppp., for al 1 <i < n. From the definition of the game

Ff’A, we haveb; > c, forali. Assume that mlaxgi > c. Let Jbe the set of the indices of
bidders whose lower extremities of their bid supports are equal to mzax b thatis J = {]j]
1<j<nb; = mlaxpi }. Since awinner is always declared in the game FPA, we have'® Prob
( the index of the winner belongsto J|v; € [c,m?xp i), fordljinJ) > 0. Consequently, there
existsj € Jsuch that Prob ( j winsthe auction | v; € [c,mzaxp ;), foral jinJ) > 0and thus Prob
( j wins the auction | v; € [c,mlax b;)) > 0. However, bidder j bids at least mzax b ; with
probability 1. Consequently, his bidding for v; € [c,mzaxp ;) contributes strictly negatively to his

expected payoff. Bidder j would then be strictly better off if he submitted, for example, a bid

equal to his valuation with probability 1 for v; € [cmax b ;). This is impossible at an
(3

equilibrium, and thusmax b ; = cand Lemma7 isproved. ||
(3

Lemma 8: Let (Fy,...,F,) be an element of M([c,L])" such that c € SuppF;, for all 1 <i <n,
and let 1 be an element of /r\V/(Fl,...,Fn,). Then u;({(vb) € [cL]? |b<v}) = 1, for all

1<i<n.



Proof: Foral 1 <i <n,letu;(.|v) beaconditiona probability distribution of . over the second
component space. Then y;({(v,b) € [cL]? |b<Vv}) = [ua([cV]v) duin = [pi([cV]v) dF;.
We show that j;2([c,V][v) = 1for F;-amost al v in [c,d]. Assume there exists a Borel subset B
of [c,d] of strictly positive F;- measure such that y;2([c,v][v) < 1 andthus us((v,djjv) > O, for
al vin B. From the previous lemma, bidsin (c,d] have a strictly positive probability of winning.
Consequently, bids in (v,d] contribute strictly negatively to bidder i's payoff if his valuation is
equal to v. Bidder i's expected payoff would then be strictly increased if, for al v in B, he bid
b =v instead of bidding in (v,d] when his valuation is equal to v. This is impossible at an

equilibrium and Lemma 8 is proved. ||

Proof of Theorem 1: The first inclusion in (i) follows from Lemma 5. The inclusion

N Cmargo N is proved in Lebrun (1996). The inclusions margo N C N and
margo N' C N follow from Lemma 3. Statement (i) then follows. Lemma 3 implies (ii).
Lemma6 and (i) imply (iii). Lemma8implies(iv). ||

Appendix 2

This appendix deals only with the game FPA. For the sake of convenience, we denote the value

of P, at (Vi,... ,Vn,b1,...,b,) bY P ;(vi,b;,v_;,b_;) where the first arguments pertain to bidder i.

Lemma 9: Let 6 be a strictly positive number. There exists a function p from[c,L]; x [c,L]; to
[cL]s such that, , p—;({(v_;,b_;) | max b_; = p(v, b)}) = O0and [ B (v,p(v,b),v_;,b_;)

d,u,,-(v,i,b,i) — f fp-z (V,b,V,i,b,i) dufi(V,i,b,i) > — ¢, forall (V,b) in [C,L]l X [C,L]Q.

Proof: It suffices to take p(v,b) = b if b is not a mass point of the distribution of the highest bid
form the biddersj # i when they follow 1, p(v,b) is dlightly (by at most §) above b if bis such a

mass point and if v is strictly larger than b, and p(v,b) is dlightly larger (by at most 6) than v if



v < bandif bissuch amasspoint. Itisthen easy to check that the statement of the lemma holds

true. ||

Lemma 10: Let ;1 ; be an element of S_;. Then, for all ¢ > 0 there exists a measurable function
function ¢; such that (;(v) is an e-best response in [c,L], from bidder i with valuation v to x_;
and p—;({(v_s,b_;) | maxb_; = ¢;(v)}) = 0, for all vin [c,L];, ¢; takes only a finite number of

values, and the set of discontinuity points of ¢; in [c,L]; isa Borel set of F;-measure 0.

Proof: Let'" wy, wy, ..., w,, be a strictly increasing sequence in [c,L]; such that w, = c,
w,, =L and wy; —w | < 6, for dl k, and such that F;({wy, ..., w,,}) = 0. Foral vin
[cL]y, let 3(v) be a § best response to n_; from bidder i when his valuation is v, that is, [
B (v.8(v),v_iby) du_;(v_i,b_;) > [ B (vbyv_;b_;) du_;(v_;,b_;) — 6, foral bin [cL]s.
Let v be the function from [c,L]; to [c,L], suchthat v(v) = p(v,3(Vv)), foral vin|[c.L];, wherep
is the function defined in the statement of Lemma 9 for 6. Then from this lemma we have [
P (viy(V)voiboi) du—i(v_i b)) > [ P (vB(V)v_ib_;) du_i(v_;,b;) — & and thus [
B (viy(v),v_;b_;) du_;(v_;,b_;) > [ B (vbyv_;b_;) du_;(v_;,b_;) — 26, for al b, that is,
~v(v) is a 26-best response and furthermore, from the definition of p in Lemma 9, we have
p—i({(v_s,b_;) | max b_; = ~v(v)}) = 0O, for al v. Conseguently, in the range of v thereis a
probability zero of atie and thus Prob (bidder i wins | bidder i's valuation = w, bidder i's bid

= b) isindependent of w for al b in the range of .

Let k besuchthat m > k > 1and v in [wj_;,wg]. Using the observation in the end of the
previous paragraph, we do not write the valuation as an argument of the probability of winning

when the bid isin the range of v. We then have

pr I’Y Wi 1 V L!b )dlu (V Lib )

= (V—wy_1) Prob (iwins| y(Wg_1)) + (Wi—1 — y(Wg_1)) Prob (i wins | ~v(wj_1))



> (V—wj_1) Prob (iwins| v(wi_1)) + (Wp_1 —y(Vv)) Prob (i wins| y(v)) — 26
= (V—wy_1) (Prob (i wins|~y(wg_1)) —Prob (i wins|~(v))) + (v—~(v)) Prob (i
wins | y(v)) — 26

> (v —(v)) Prob (iwins| y(v)) — 36 = [ B (v,y(v),v_i,b;) du_i(v_;b;) — 36.

The first inequality follows from the fact that v(wj_;) is a 26-best response of bidder i with
valuation w;_;. The second inequality follows from the fact that v — wy_1| < 6, for dl vin
[Wy_1,Wi]. We thus see that ~(w;_1) is a 36-better response from bidder i with valuation v in
[Wi_1,Wy] than (V). Since (V) is a 26-best response from bidder i with valuation v, we obtain

that v(wy._1) isa56-best response from bidder i with valuation v in [wj_;,wy].

To end the proof of Lemma 10, it suffices now to take 6 = ¢/5 and to define ¢ over [c,L]

as follows,

C(v) = v(Wi-1),

if and only if v belongsto [wj_,wy), for k > 1, and

C(L) = ’V(Wmfl)'

In fact, {(v) isa5é = e best response from bidder i with valuation equal to v, for al v in [c,L];

and the set of possible discontinuitiesisincluded in {wj,...,w,,} and F;({wy,... ,w,;,}) = 0. ||

Lemma 11: Let (Fi,...,F!);>; be a sequence in M([c,L])" which converges weakly towards
(Fy,...,Fn). Let (p';);>1 be a sequence in S_;(F',) which converges weakly towards p_; in

S_i(F—;). Thenfor all € > 0, there exists a measurable function ¢; from [c,L]; to [c,L]2 such that



the sequence [ P; (Vi,b;,v_;,b_;) d(¢+FL) (viby) dul;(v_;,b_;) tends towards [ P (v;,bi,v_;,b_;)

d(¢i+F2) (Vi,by) dpu_s(v_,b_;) and
B (il v by )A(GxFs ) (v, b ) dpi (Vo b)) > [B5 (vi,bi v by ) dp (Vi by )i (v b)) — €,
for all J7% |n8L(FL)

Proof: Let e bestrictly positive. Let ¢; be the function asin the previous |lemma corresponding to
this e. The expected payoff [P; (v;,bi,v_;,b_;)d(¢+F)(vi,b;)dul,;(v_;,b_;) can be rewritten as
[P (Vi G (Vi) v_i,b_i)dF: (v;)dpl ;(v_;,b_;).  The measures F.® u', tend weakly towards
F; ® p—;. Since the set of discontinuities of p; (v;,b;,v_;,b_;) isincluded in { (v;,b;,v_;b_;) | b;
= maxb_; }, we have that the set of 2n — 1 tuples (v;,v_;,b_;) where p; (v;,(;(v;),v_;b_;) is
discontinuousisincluded in { (v;,v_;,b_;) | ¢; isdiscontinuous at v; or (;(v;) = maxb_; }. This

last set can be rewritten as follows
{ (Vi,V,i,b,i) IQ is discontinuous at v; } U { (Vi ,V,i,b,l') |C’L'(Vi) = maxb_; }

The F; ® p—;-measure of the first set is equal to the F; measure of { v; | (; isdiscontinuous at v; }

and is thus equal to 0. The second set is included in the reunion U { (Viv_iby) |z =
k=1

maxb_; }, where {z, ..., z,} is the finite range of (;. The F; ® u_;-measure of the set {
(Viv_;,b_;) | zz = maxb_; } isthe u_; measure of { (v_;,b_;) | zz = maxb_; } and, from
Lemma 10, is equal to 0. Consequently, the F; ® u_; measure of the set of discontinuities of
P7 (vi,Gi(Vi),V_i,b_;) is equal to 0 and thus [ B7 (v;,Gi (Vi) V_i,b_;) dF.(v;) du’;(v_;,b_;) tends
towards | 7 (v;,i(Vvi),v_;,b_;) dF;(v;) du_;(v_;b_;). Since the last integral is equal to [

B: (vi,b;v_;,b_;) d(¢;«F;)(v;,b;) du—;(v_;,b_;), we have proved the first part of Lemma 11.



The integrals [ 7 (v;,bi,v_;,b_;) d(¢*F;)(vi,b;) du_i(v_;,b_;) and [ B (vi,bi,v_;,b_;)
dui(vi b)) du—i(v;b;) can respectively be rewritten as [(f B (Vi,G(Vi)v_iby)
du—i(v_i,b-:)) dFi(v;) and [ { [ (i (vi,bi,v_i,b-i) du—i(v_i,b-i)) dui(bi [ vi) } dFi(vi),
where ;(b; | v;) isaconditional distribution of 1; with respect to v;. The second part of Lemma
11 then follows from the fact that (;(v;) is a e-best response of bidder i to p_; and thus [

i (Vi,Gi(Vi),V_i,b_y) dp—i(v_;,b_;) > fﬁ: (Vi,b;,v_ib_;) dp_i(v_i,b_;) — ¢ foralb;. ||

Lemma 12: Let (u');>; be a sequence of Nash equilibria of FPA which converges weakly

towards ;.. Then 12 is a Nash equilibrium of FPA and (P (4!));=; tends towards P (1).

Proof: Let (F,...,F )= be the sequence in M([c,L];)" of margina distributions of (u!');>;
which converges weakly towards (F,... ,F,), the marginals of ;. Since the payoffs are bounded
there exists a subsequence (1),>1, such that the limit of (P 1,... P ,,)(x"), for t tending towards

+ oo, existsand isfinite. We will first prove that

foral 1<i<nandal 6 € S;(F). Suppose there exist 1 <i <n and 0; € S;(F;) such that

lim P (). Therethusexists§ > Oandt > 1, such that
t— 4 00

T:J)i(ei’ﬂfi) >
PiOipi) > Pi(ul) + 6,

foralt > t. Since ! isaNash equilibrium of F’I5A(Flf,... F), for al t > 1, we also have

1T n

A7) Pi(Oipns) > Pi(wlply) + 6,



or, equivalently,

B (vb)d) @) < [B(vb)db; ® pi) — 8,

foral t >t and all z/ff in S(Fﬁt). Let ¢; be the function from the previous lemma corresponding

toe = §/2 and consider the measures \ = (;+F!. Wehave \" € S(F), and thus

(A8) JB(vb) N @ ) < B (V) d(6; @ ps) — 8,

for all t > t. From the previous lemma we also know that, Ii_lr_n [ :(v,b) d\r @ p",) exists,
- 0.9)

is equal to [P ;(v,b) d\ @ p;), where \; = (*Fi, and is not smaller than [P ;(v,b)

dv; @ p—;) — 612, foradl v; inS;(F;) andin particular for v; = 6,. We thus have
lim (v,b) d )\l' b > (v,b) d(6; ;) — 6l2
im_JB v A @ pl) = [B(vb) d(0; @ p)

This last inequality however contradicts (A8), there exists no such 6; and (A7) holds true for all

0; € SL(FL)

In this second part of the proof of Lemma 12 we prove that, for all 1 <i < n, player i can
obtain at least the limit of his equilibrium payoffsf’dﬁt) by playing the limit u; of his

equilibrium strategies, that is, that

Suppose there exists 1 < i < n such that the inequality above does not hold, that is, P ; (1) <

; Iijrp P :(ul). By taking a subsequence if necessary we can assume that Zﬁ i(u) is convergent
— + 00 =1



(s nce P ; is bounded). Because the function >"p ; is upper semicontinuous, the integral [
=1

n
i
7 =1

7

dv considered as a function of the probability measure v is also upper semicontinuous.

Consequently, we have

lim  S"P,(u) = lim leww < f;tfidu = ;“mu).

=+ 00 ;5 t=+00 2

There thus exist a convergent subsequenceu's, p'z2, ... and 1<j < n with j#i such that

i m P ,(u'w) < P (1), which contradicts the result of the first part of the proof and thus the
— 0.0)

second part of the proof isfinished. ||

Proof of Theorem 2: Immediate from Lemmal12. ||

Proof of Corollary 2: Let (F, ..., F,);>1 be a sequence in M([c,L])" which converges weakly
towards (Fy, ..., F,) and such that ¢ € Supp F, for all 1 <i<n. Let (u');>; be aweakly
convergent sequence such that ! € JA\J/(Fll,... FL), for al 1 > 1. Let p beits limit. From
Corollary 1 or Theorem 2, 1 belongs to K/(Fl,...,F,,L). From Theorem 1 (iv), we have
p{(vb) e [cL)?|b<v}) = 1, for al 1<i<n. Since u;({(v,b) €[cL]?|b<v}) >

llimsup pt({(v,b) € [c,L]? | b < v}), we have p;({(v,b) € [cL]? | b<Vv}) = 1and Corollary 2
— + o0

isproved. ||

Appendix 3

Proposition 2: Under the assumptions of Proposition 1, if x < % the supports of the

equilibrium bid distributions are as in Figure 2, and



J(b) = 1(b) = H(b) =1,forallb >

J(b) = I(b) = M2 and H(b) = 1, for bin Range A, that is, for bsuch thatb < b <1,

J(b) = q, I(b) = =, and H(b) = % for bin Range C, thatis,0< b <b ,

where
_ B _ a-p
n=1-q+(@—pxandb = Ex.
[FIGURE 2]
Footnotes

1. Bidding is thus mandatory. However, we will assume in the next paragraph that the minimum
allowable bid c is not larger than any possible valuation. No bidder is thus forced to a strictly

negative payoff and any equilibrium would also be an equilibrium if bidding was only voluntary.
2. The assumption ¢ > 0 was unnecessary in Lebrun (1996) and we do not keep it here.

3. In Lebrun (1996), we assumed that the support of F; was included in [c,K — 1], for all i, and,
for the sake of convenience in the proofs where we shifted upwards some bid distributions, we
required the strategies to define bid probability distributionsin [c,K]. However, asit can be easily
shown, no equilibrium involves strategies bidding above K — 1. Here, our bound L is egqual to

the bound K — 1 in Lebrun (1996).



4. Consider the three bidder example where bidder 1's valuation is equal to 1 with probability 1,
bidder 2's valuation is equal to 3 with probability 1, and bidder 3's valuation is equal to 1 with
probability 1/2 and 4 with probability 1/2. If u, is bidder 1's strategy consisting in aways
bidding 3, 12 isbidder 2's strategy which always bids 3, and 3 isbidder 3's strategy consisting in
bidding O if the valuation is equal to 1 and 3 if the valuation is 4. Then (u1,u2,p3) is @ Nash
equilibrium of FPA but cannot be extended in an equilibrium of FPA'. Inthe example with two
bidders from the introduction of Lebrun (1996) (where bidder 1's valuation is concentrated at O
and bidder 2's valuation is uniformly distributed over [0,1]), there is no equilibrium of FPA but

there exists one of FPA' (where both bidders submit 0 with probability 1).

®: In this example of footnote 4, bidder 2 has to loose with probability 1 as soon as bidder 3 is

involved in the tie but hasto win if heisinvolved in the tie with only bidder 1.

6: Since for any Nash equilibrium ;' of FPA' marg'y' is a Nash equilibrium of FPA, the same
procedure to obtain an equilibrium of FPA' can be applied to margy' and we see that any Nash
equilibrium of FPA' is equivalent (induces the same distributions over the valuation-bid couples)
to an equilibrium where one bidder aways sends the message 1 and where the other bidders
always send the message 0. For such an equilibrium, we can interpret the messages as bids in a
secondary second price auction used to break possible ties. Notice that in this auction, the second
highest bid and thus the bidders payments are always equal to 0. Maskin and Riley (1996a) call a

similar tie breaking rule the Vickrey auction-tie breaking rule.

7. Thevalueat L isequal to the value over [w,, 1,W,,).

8: Atd, Fy,...,F, areleft-differentiable.



9. The requirement § & (v) <0, for al vin (c,c + &, implies that G,/G; is strictly increasing

over (c,c+ ¢] and that conditionally on v € [c,g] the distribution G; first order stochastically

dominates G, (strictly), for al ein (c,c+ 6).

10: Actually, in Lebrun (1996) it was already shown that this strict ranking holds true for an
open set of parameters (+,6) including the set of couples of (v,6) such that v6 > 1/2.

1 Notice that the subset of couples of distributions satisfying B or C is everywhere dense in
M(]0,1])? and thus that any open neighborhood of (F;,F») has a non-empty intersection with this

subset.

12: Here, we mean the natural variant for bidder i's expected payoff conditional on v;, that is, the
variant whose value at v; is equal to the value of the variant of the conditional expected payoff if
F; was concentrated at v;.

13: Under assumption A, if two valuation distributions are equal, so are the bid functions (see

Corollary 3 (iv) in Lebrun 1997aor Corollary 4 (iv) in Lebrun 1997b).

4. Where, for example,c = 0and L = 2.

15: As mentioned in the proof of Lemma 4, this method of proof is similar to the method
followed in Lebrun (1996). A method identical to the method in Lebrun (1996) would here rely
on (using the notation from the proof of Theorem 2 in Lebrun 1996) N; equal to the set of
strategies which do not submit any mass point by, £ b of the highest bid from the other biders
following n_; for a strictly probability set of v; # b, and which send the message 1 aways

except when the submitted bid isequal to b , in which case the message sent is 0, for i # j, and on



N ; equal to the set of strategies which do not submit any mass point different from b of the
distribution of the highest bid from p_; for a strictly positive probability set of valuations
different from this point and which always send the message 1. Here, we rather use a similar
method which is equivalent to using (in the notation of the proof of Theorem 2 in Lebrun 1996)
N ; which is the set of strategies which always send the message 0, i # j, and N ; which is the set
of strategies which always send the message 0 and to applying the obvious variant of Lemma4 in
Lebrun (1996) where assumption 1. is replaced by the assumption that, for al 1 <i < nand for

al V; € Ri, we ha\/eSUp Qi(Th',M,i) > Qi(Vi,M,i).
ni € A;

16: 1f J= {1,...,n}, the probability isequal to 1. If J# {1,...,n}, the inequality follows from

the fact that b; < b; with astrictly positive probability, for all i ¢ Jandj € J.

17: Obviously, such a sequence exists.
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