
Uniqueness of the Equilibrium in First-Price Auctions1

by

Bernard Lebrun

Discussion Paper
Department of Economics, York University, Toronto, ON, Canada

2004

Abstract

If the value cumulative distribution functions are strictly log-concave at
the highest lower extremity of their supports, a simple geometric argument
establishes the uniqueness of the equilibrium of the first-price auction in the
asymmetric independent private values model.

J.E.L. Classification Number: D44
1Comments from two referees and an editor are gratefully acknowledged. The author

benefited from the financial support of the Social Sciences and Humanities Research Coun-
cil of Canada. This discussion paper is a revised version of Cahier 9923 du Département
d’économique de l’Université Laval—Cahier de Recherche 99-13 du GREEN.

1



Uniqueness of the Equilibrium in First-Price Auctions

1. Introduction

The analysis of the first-price auction becomes quite complex as soon as
one departs from the, often unrealistic, assumption that the bidders’ valu-
ations are distributed identically. Ties may have to be broken according
to a rule different from the fair tie-breaking rule in order for an equilibrium
to exist (see Lebrun 1996, 2002, Jackson et al. 2002, Maskin and Riley
2000b). Moreover, when an equilibrium exists, it may not be possible to
obtain an explicit mathematical formula for it. Nevertheless, under some
regularity assumptions on the valuation distributions, there exists an implicit
characterization of the equilibrium (see Lebrun 1999a and Maskin and Riley
2000a).
In order to gain some insights into the properties of the equilibrium, some

authors have tried to overcome the lack of a general formula by computing
numerical estimates of the equilibria (see Athey 2001, Bajari 2001, Dalkir et
al. 2000, Li and Riley 1997, Marshall et al. 1994, , Maskin and Riley 2000a,
Marshall and Shulenberg 2000). The uniqueness of the equilibrium would
save these authors the trouble of looking for other equilibria, once they have
found one. The uniqueness would also be useful to experimental researchers.
Indeed, they would have to compare their subjects’ bidding behaviors with
only one equilibrium.
Lebrun (2002) proves that the Nash equilibrium correspondence is upper-

hemicontinuous with respect to the valuation distributions. Assumptions
under which the equilibrium is unique would thus imply the continuity of
this correspondence. In turn, this continuity would bring robustness to the
numerical simulations. Properties of the equilibrium would not be particular
to the precise examples the researchers have solved numerically, but would
be robust to small changes in the valuation distributions. Similarly, the
uniqueness of the equilibrium would bring robustness to some theoretical
results, which would hold true for larger classes of valuation distributions
than those for which they were proved2.

2As Lebrun (2002) shows, the continuity, implied by the uniqueness, can also be used
to disprove existing conjectures.
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Maskin and Riley (1996) and Bajari (2001) consider the uniqueness issue
when the valuation distributions are absolutely continuous with density func-
tions continuous and strictly positive everywhere over the supports3. Even
in natural examples where the valuations are distributed over the same in-
terval, density functions may vanish at its lower extremity. Assume that
m > 1 bidders whose valuations are distributed identically according to the
cumulative distribution function F collude into one cartel. Assume further
that, inside the cartel, the information about the members’ valuations and
the monitoring of the members’ bids are perfect and that all allocations and
side-payments are possible. Then, the cartel will maximize the total surplus
of its members and, when it wins the item, will allocate it to its member with
the highest valuation. The cartel will, thus, behave as a single bidder with
valuation cumulative distribution function Fm. The density function of Fm

vanishes at the lower extremity of the support, even if the density function
of F does not4. There has been great interest in the literature for this case
(see Marshall et al. 1994, Thomas 1997, Dalkir et al. 2000, Whaerer 1999).
Considering the likely prevalence of collusion in auctions (see, for example,
Graham and Marshall 1985, Hendricks and Porter 1989, Baldwin et al. 1997,
Persendorfer 2000, Porter and Zona 1999), this interest is well deserved.
Lebrun (1999) proves uniqueness in the common-support case when the

valuation distributions have a mass point at the lower extremity of the sup-
port. If the reserve price is binding, this result implies uniqueness even when
the valuation distributions are atomless. However, it does not apply to atom-
less distributions when the reserve price is not binding. Lebrun (1999a) also
proves uniqueness in the symmetric case, when all valuation distributions are
identical, and in the case where the set of valuation distributions reduces to
a pair of stochastically ranked distributions5.
Here, we prove uniqueness without requiring mass points, nor the ex-

istence of strictly positive continuous extensions of the density functions.
Furthermore, we do not require any relation of stochastic dominance, in
particular, any equality, between valuation distributions. Rather, as is com-

3These authors do not offer any justification for their use of L’Hospital’s rule at a point
of singularity, where the derivatives may not be defined. See footnote 9.

4Our main uniqueness result is particularly appropriate in this case since our assump-
tion of strict logconcavity of the cumulative distribution function Fm arising from collusion
is equivalent to the strict logconcavity of the “primitive” cumulative distribution function
F .

5In Appendix 6, we extend this last result.
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mon in economic theory (see Bagnoli and Bergstrom 1989 and An 1998), we
impose a condition of log-concavity on the valuation cumulative distribution
functions. Although many standard parametric distributions are strictly log-
concave over their whole supports, we require only local strict log-concavity
at the highest lower extremity of the supports. This assumption is equiva-
lent to the assumption of decreasing reverse hazard rates in some, arbitrarily
small, interval to the right of this highest lower extremity.
Our proof consists manly in a simple geometric argument. In Section

2, we first consider the common-support case, where this argument is most
easily explained. In Section 3, we extend our result from the common-
support case to the case of possibly different lower extremities and identical
upper extremities by truncating the valuation distributions from below. We
next extend, in Section 4, our result to the case where even the upper ex-
tremities may differ by considering the equilibrium strategies as restrictions
over the valuation supports of the best reply functions. These best reply
functions are defined over larger intervals and we apply to these best reply
functions the arguments we previously applied to the equilibrium strategies
in the common-support case. Section 5 concludes. Details of our proofs can
be found in Appendices 1 to 6.

2. Statement of the Main Result

Consider the standard independent private values model with n risk-
neutral bidders, a reserve price r, the fair tie-breaking rule, and possibly
different valuation probability distributions F1, ..., Fn, with, possibly dif-
ferent, interval supports [ci, di], with ci < di. We use the same notation
for a probability distribution and its cumulative distribution function that
is continuous from the right. We now describe our basic set of regularity
assumptions on the valuation distributions.

Assumptions A.1:

(A.1) For all i = 1, ..., n, the support of Fi is an interval [ci, di],
with ci < di.

(A.2) For all i = 1, ..., n, the cumulative function Fi is differentiable
over (ci, di] with a derivative fi locally bounded away from zero over this
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interval6.

Under Assumptions A.1, the valuation interval [ci, di] may differ accross
bidders and there may not exist any strictly positive and continuous extension
of fi over the whole interval [ci, di]. Without loss of generality, we can assume
that the support of F1 has the largest lower extremity and the support of
F2 has the second largest, that is, ci ≤ c2 ≤ c1, for all i ≥ 2. Although
we will allow ci to be a mass point of Fi in some of our intermediate results,
we will mainly focus on the atomless case, which is more natural in many
applications7. Theorem 1 below is our main result.

Theorem 1: Let Assumptions A.1 be satisfied. Assume also Fi (ci) = 0,
for all i ≥ 1. Without loss of generality, assume c1 ≥ c2 ≥ ci, for all i ≥ 2.
Then, under any of the following additional assumptions (i), (ii), or (iii),
the first-price auction with reserve price r has one and only one Bayesian
Nash equilibrium where bidders bid at most their valuations:

(i) r > c1
(ii) c1 > c2
(iii) there exists δ > 0 such that Fi is strictly log-concave over

(c1, c1 + δ) ∩ (ci, di), for all i ≥ 1.

The cumulative function Fi is strictly log-concave over (c1, c1 + δ)∩(ci, di)
if and only if lnFi is strictly concave, that is, its derivative

fi
Fi
—the reverse

hazard rate—is strictly decreasing over this interval. In the next section, we
prove Theorem 1 in the case of a common support. We then extend our
proof to the general case in the following sections.

3. Relevant Existing Results

Assume that the valuation supports are identical, that is, that ci = c and
di = d, for all i. In this section, we allow the valuation distributions to have
a mass point at c. Since the case where the bidders’ valuations are larger
than the reserve price with probability zero is uninteresting, we assume that
r < d. When the reserve price is nonbinding, that is, r ≤ c, the proof in

6That is, for all v in (ci, di], there exists ε > 0 such that fi (w) > ε, for all w in
(v − ε, v + ε).

7We could easily extend Theorem 1 to the case where ci is a mass point of Fi, for some
i.
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Lebrun (1999a or 1997) of the existence of a Bayesian Nash equilibrium, in a
model where c may be a mass point of some valuation distributions, extends
easily to our model. Lebrun (1999a) also provides a characterization of the
equilibria and, when c is a mass point of all valuation distributions, proves
the uniqueness of the equilibrium . We have the results C.1 and U.1 below,
which, along with their extensions and the methodology of their proofs, we
will use in proving Theorem 1 (Section 2).

Existing Results I (Lebrun 1999a): Let Assumptions A.1 be satisfied.
Assume further ci = c, di = d, for all i, and r ≤ c.

C.1: Characterization of the Equilibria

There exists a Bayesian Nash equilibrium. In every equilibrium the bid-
ders follow nondecreasing bid functions β1, ..., βn that are not smaller than c
over (c, d] and that are strictly increasing and differentiable when their values
are strictly larger than c. Moreover, for every equilibrium (β1, ..., βn) there
exists η in (c, d) such that the inverse bid functions α1 = β−11 , ..., αn = β−1n
are solutions of the system of differential equations (1)—considered over the
domain D = {(b, α1, ..., αn) |c, b < αi ≤ d, for all 1 ≤ i ≤ n}—with boundary
conditions (2) and (3):

d

db
lnFi(αi (b)) =

1

n− 1

(
− n− 2
αi (b)− b

+
X
j 6=i

1

αj (b)− b

)
, (1)

for all i = 1, ..., n and b in (c, d],

αi (c) = c, for all, except possibly one, i between 1 and n, (2)

α1 (η) = ...αn (η) = d (3).

U.1: Uniqueness of the Equilibrium
If F1 (c) , ..., Fn (c) > 0, there exists one and only one equilibrium.

In the second initial condition (3) in C.1 above, η is the common maxi-
mum of all bid functions. Summing the equations in (1) for all i 6= j and
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rearranging give:

d

db

X
i 6=j
lnFi (αi (b)) =

1

αj (b)− b
.(4)

In order to prove (1), Lebrun (1999a) actually obtained (4) first. Once the
regularity conditions have been proved, (4) is the first-order condition from
bidder j’s maximization problem. In fact, the maximum of the expected
payoff (vj − b)

Q
i6=j Fj (αj (b)) of bidder j with valuation vj must be reached

at b = βj (vj). The logarithmic derivative
−1
vj−b +

d
db

P
i6=j lnFi (αi (b)) of the

expected payoff must thus vanish at b = βj (vj) or, equivalently, at vj =
αj (b), and (4) follows.
From (2), if there exists j such that αj (c) > c, then αi (c) = c, for

all i 6= j. From (4), if αj (c) > c, then d
db
lnFi (αi (b)) is bounded when b

tends towards c, and, thus, lnFi (αi (c)) = lnFi (c) cannot be infinite, that is,
Fi (c) > 0, for all i 6= j. The only time a bidder’s inverse bid function takes
at c a value strictly larger than c or, equivalently, the only time a bidder’s
bid function can take the value c everywhere over a nondegenerate interval
is when all the other bidders’ valuation distributions have a mass point at c.
We have proved Lemma 1 below.

Lemma 1: Let Assumptions A.1 be satisfied. Assume further ci = c,
di = d, for all i, and r ≤ c. Let (α1, ..., αn) be a solution over (c, η], with
c < η, of (2) and (1)—considered in D—and let j be in {1, .., n}. If αj (c) > c,
then Fi (c) > 0, for all i 6= j.

When we consider, as in Lebrun (1999a), the unknown functions of the
equations (1) to be ψ1 = F1α1, ..., ψn = Fnαn, the R.H.S.’s of these equations
are not locally Lipschitz at b = c since, at this point, denominators vanish
and αi = F−1i (ψi (b)) may not be locally Lipschitz, if fi vanishes or is not
defined. Even if the first initial condition (2) was completely determined,
we could, thus, not infer the uniqueness of the solution of (1), (2), and (3)
from the theory of ordinary differential equations.
Lebrun (1999a) chooses rather to consider the solutions of the system the

differential equations (1) form and of the second initial condition (3), which
satisfies the assumptions of the standard theorems (again, for the unknown
functions ψ1 = F1α1, ..., ψn = Fnαn). However, in this initial condition, η is
an unknown parameter. Lebrun (1999a) proves the existence and uniqueness
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of a solution to (1), (2), and (3) by proving the existence and uniqueness of a
value of the parameter η such that the solution of (1) and (3) also satisfies (2).
In his proof, Lebrun (1999a) establishes and uses the following important
property of strict monotonicity over (c, d] of the solutions of (1) and (3) with
respect to η.

Lemma 2: Let Assumptions A.1 be satisfied. Assume further ci = c,
di = d, for all i, and r ≤ c. Let η and eη be in (c, d) such that η < eη.
Let (α1, ..., αn) be the solution over (γ, η], with γ < η, of (1) and (3) for the
value η of the parameter and let (eα1, ..., eαn) be the solution over (eγ,eη], witheγ < eη, of (1) and (3) for the value eη of the parameter. Then, eαi (b) < αi (b),
for all b in (max (γ, eγ) , η] and all i = 1, ..., n.
For the sake of completeness and because we will use Lemma 2 several

times in this paper, we provide its proof in Appendix 1. In Section 4 and
Appendix 5.2 (Lemma A5.2-2), we extend Lemma 2 to the case of different
supports.
The uniqueness result U.1 actually follows easily from (4) and Lemma 2.

In fact, suppose that there exist two equilibria and thus two different values
η and eη such that the respective solutions (α1, ..., αn) and (eα1, ..., eαn) of (1)
and (3) are also solutions of (2). Let j be an integer between 1 and n such
that αi (c) = c, for all i 6= j (from (2) such an integer exists). Without loss
of generality, we can assume that η < eη. The value8 of ln

Q
i6=j Fi (αi (b))

at b = η is thus strictly larger than the value of ln
Q

i6=j Fi (eαi (b)) at the
same point. From Lemma 2, we have eαi (b) < αi (b), for all b in (c, η] and
all i = 1, ..., n, and, by taking the limit for b tending towards c, eαi (c) = c,
for all i 6= j. From (4), the derivative of ln

Q
i6=j Fi (αi (b)) is thus strictly

smaller than the derivative of ln
Q

i6=j Fi ( eαi (b)) over (c, η]. Consequently,
the difference between these two logarithms increases as b decreases towards
c and they cannot both be equal to the same finite value lnFi (c)

n−1 at b = c.
As is apparent from the previous paragraph and from Lemma 2, all that is

needed to ensure the uniqueness of the equilibrium is that, among F1, ..., Fn,
at least n− 1 valuation distributions have a mass point at c9. Observe also

8This value is 0.
9The proof of uniqueness does not carry over to the atomless case with nonbinding

reserve price since, in this case, ln
Q

i6=j Fi (αi (b)) takes the infinite value −∞ = ln 0
at b = c. A priori, the difference between the two logarithms ln

Q
i6=j Fi (αi (b)) and

ln
Q

i6=j Fi ( eαi (b)) could increase as b tends towards c, while, at the same time, both
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that if the reserve price is binding, that is, if r > c, the equations character-
izing the equilibrium are unchanged if we modify the valuation distributions
by concentrating at r the probabilities spread over [c, r]. By doing so, r
becomes the lower extremity of the common support and all valuation dis-
tributions have a mass point at r. Result U.1 can then be applied and one
and only one equilibrium exists. We have C.2 and U.2 below.
From Lemma 1, the condition (2) in the characterization C.1 can be

replaced by the condition (2”) in C.3 below when at least two valuation
distributions are atomless and the reserve price is not binding, that is, r ≤ c.

Extension of Results I: Let Assumptions A.1 be satisfied. Assume
further ci = c and di = d, for all i.

C.2: Characterization of the Equilibria

C.1 holds true, even when r > c, if (2) is replaced by (2’) below:

αi (max (c, r)) = max (c, r) , for all, except possibly one, ibetween 1and n. (2’)

C.3: Characterization with a Nonbinding Reserve Price and
At Least Two Atomless Distributions: Assume that r ≤ c and that there
exist at least two different values of the index k such that Fk (c) = 0.

C.1 holds true even if (2) is replaced by (2”) below:

α1 (c) = ... = αn (c) = c.(2”)

logarithms could tend towards −∞.
A common mistake here is to make b tend towards c in (1) and “apply” L’Hospital’s rule

to “find” that (1) and (2’)—the boundary condition at c that holds true in the atomless
case (see C.3 below)—determine the values of the derivatives d

dbα1 (c) , ...,
d
dbαn (c). In

the case of density functions strictly positive everywhere, by “applying” L’Hospital’s rule
again (whether implicitly or explicitly), as b tends towards c, to Fi(αi(b))

Fi(fαi(b)) and by dividing
numerator and denominator by d

dbαi (c) =
d
dbeαi (c) and fi (c), one “finds” that the ratio

Fi(αi(b))
Fi(fαi(b)) and thus the product Qi6=j

Fi(αi(b))
Fi(fαi(b)) tend towards one and one “rules out” an

increasing difference ln
Q

i6=j Fi (αi (b)) − ln
Q

i6=j Fi ( eαi (b)). This procedure is obviously
flawed since it uses the derivatives d

dbα1 (c) , ...,
d
dbαn (c) without proving that they exist.

For a published instance of this oversight, see pp 202-203 in Bajari (2001). However, a
similar approach can work in some cases such as, under some assumptions, when there are
only two valuation distributions.
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U.2: Uniqueness of the Equilibrium10

If Fi (c) > 0, for at least (n− 1) values in {1, ..., n} of the index i, or if
r > c, then there exists one and only one equilibrium.

4. The Common-Support Case
4.1 The Symmetric Case

As in the previous section, we assume in this section that ci = c, di = d,
r < d, and we allow the valuation distributions to have a mass point at c.
Lebrun (1999a), in the general n bidder case, and Maskin and Riley (2000a),
in the two bidder case, prove the property P.1 below of the equilibrium,
according to which the same relations of first order stochastic dominance
pass through from the valuation distributions to the bid distributions. From
P.1, if two distributions Fi and Fj are equal, bidders i and j use the same
equilibrium bid function, that is, βi = βj. Thus, in the symmetric case,
where the bidders’ valuations are distributed identically, all bidders use the
same bid function β. By transforming any equation in (1) as an equation
in the only unknown β and solving this differential equation as in Riley and
Samuelson (1981), Lebrun (1999a) proves U.3 below—the uniqueness in the
symmetric case.

Existing Results II (Lebrun 1999a): Let Assumptions A be satisfied.
Assume further ci = c and di = d, for all i.

P.1: Properties of the Equilibria

(i) If Fi ≤ Fj, then, for all Bayesian Nash equilibrium (β1, ..., βn), we
have Fiαi ≤ Fjαj over [r, η], where η = β1 (d) = ... = βn (d).
(ii) If Fi = Fj, then, for all Bayesian Nash equilibrium (β1, ..., βn), we

have βi = βj.

10Here, as in the rest of the paper, uniqueness refers to the uniqueness of the equilibrium
strategies over the domains of valuations where the bidders submit “serious bids,” that is,
bids that win with strictly positive probability.
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U.3: Uniqueness of the Equilibrium in the Symmetric Case

If F1 = ... = Fn, the equilibrium (β1, ..., βn) is unique and symmetric,
that is, β1 = ... = βn.

From U.3 above, the equilibrium is unique in the symmetric case where
Fi = F , for all i, even when, contrary to the assumptions of U.2, F is atomless
and r is nonbinding, that is, r ≤ c. Consequently, we do not need to consider
the symmetric case in our proof of Theorem 1 (Section 2). However, because
this case is particularly simple, we use it in this subsection to introduce and
illustrate our main argument of proof.
The symmetric case with an atomless valuation distribution F and a

nonbinding reserve price satisfies the assumptions of Theorem 1 (Section 2)
if and only if there exists δ > 0 such that F is strictly log-concave over an
interval (c, c+ δ), with δ > 0. Let (β1, ..., βn) be an equilibrium for such a
symmetric case. From P.1 (ii), this equilibrium is symmetric and β1 = ... =
βn = β. The system of differential equations (1) in the characterization C.1
reduces to the single equation (5) and the boundary conditions (2) and (3)
reduce to (6) and (7) below:

d

db
α (b) =

F (α (b))

f (α (b))

1

α (b)− b
,(5)

α (c) = c (6)

α (η) = d (7).

where η = β (d) belongs to (c, d) and α is the inverse of β.
Figure 1 depicts a solution of (5), (6), and (7) as well as the “direction

field” defined by the equation (5) in the space of couples (b, v). The graph
of any solution of (5) must be tangent to the line segment of slope F (v)

f(v)
1

v−b
through everyone of its points (b, v). Since the difference between v and b is
fixed along any line parallel to the 45 degree-line, the ratio 1

v−b is also fixed
along such a line. From our assumption of strict log-concavity of F over
(c, c+ δ), the ratio F (v)

f(v)
is increasing in v over this interval. Consequently,

near (c, c), the slope defined by (5) at a point on a line parallel to the 45
degree-line is steeper the further this point is to the right of c. If there
existed two different solutions of (5) and (6), the points of their graphs on
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Figure 1:

a line parallel to and above the 45 degree-line would spread further apart as
this line gets closer to the 45 degree-line. Thus, both their graphs could not
get closer to the point (c, c) on the 45 degree-line as b tends towards c.

One way to make the argument at the end of the previous paragraph
more formal is to first suppose that there exist two different solutions of
(5) and (6) and thus two different values η and eη of the parameter such
that the corresponding solutions α and eα of (5) and (7) are also solutions
of (6). Assume that eη is the strictly smaller value. As depicted in Figure
2, the graph of the corresponding solution eα thus lies above the graph of
the solution α. If we slide the graph of the function α down along the
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45 degree-line by a small ε > 0, we obtain the graph of the new functionbα, such that bα (b) = α (b+ ε) − ε and such that bα (c− ε) = c − ε. The
derivative d

db
bα (b) of this function at b is equal to the derivative d

db
α (b+ ε)

of the initial function α at b+ ε and, from (5), is equal to F (α(b+ε))
f(α(b+ε))

1
α(b+ε)−b−ε

and, thus, to F (bα(b)+ε)
f(bα(b)+ε) 1bα(b)−b . Since F (v) /f (v) is strictly increasing for v

close to c, the derivative d
db
bα (b) is strictly larger than F (bα(b))

f(bα(b)) 1bα(b)−b , for all b
close to c. Consequently, at any intersection point near (c, c), the graph of
the function bα must be strictly steeper than the graph of any solution of (5)
and, in particular, than the graph of eα. The graph of this latter function eα
could, thus, not cross from the right and from above the graph of the former
function bα in order to reach the point (c, c), and eα could not be a solution
of (6). There cannot be two distinct solutions of (5), (6), and (7) and the
equilibrium is unique. In the next subsection, we apply this argument to
the general, possibly asymmetric, common-support case.

4.2 The General Common-Support Case

Let the assumptions of Theorem 1 (Section 2) be satisfied. The valuation
distributions are, thus, atomless. From U.2 (Section 3), we can assume, in
our proof of Theorem 1 for the common-support case, that the reserve price
is not binding, that is, r ≤ c. The characterization C.3 (Section 3) then
applies.
For the general asymmetric case, where the valuation distributions may

be different, it is difficult to depict the direction field as we have done in
Figure 1 for the symmetric case. In fact, according to (1), the slope of any
component αi depends not only on this component and on b, but also on all
the other components αj, j 6= i. Nevertheless, it is straightforward to apply
the “sliding” argument of the previous subsection to the general asymmetric
case. According to Lemma 3 below, if we slide a solution of (1) down the 45
degree-line, we obtain a solution, not of the system of differential equations
(1), but rather of the system of differential strict inequations (10). At
any meeting point between a solution of the system of differential equations
(1) and a not larger solution of the system (10) of differential inequations,
the solution of the system of differential inequations (10) is steeper. As
we show in Lemma 4 below, no solution of the system of the differential
equations (1) can, thus, cross from the right and from above a solution of the
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Figure 2:
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system of differential inequations (10). The proof (by reductio ab absurdum),
illustrated in Figure 2 for the symmetric case, goes through to the asymmetric
case.

Lemma 3: Let Assumptions A.1 be satisfied. Assume ci = c and
di = d, for all i. Assume also that there exists δ > 0 such that F1, ..., Fn are
strictly log-concave over (c, c+ δ). Let (α1, ..., αn) be a solution of (1) with
strictly positive derivatives11 over an interval (c, c+ γ] such that γ > 0 and
αi (c+ γ) < c + δ. Let ε be a strictly positive number strictly smaller than
γ, that is, 0 < ε < γ. Let bα1, ..., bαn be defined as follows:

bαi (b) = αi (b+ ε)− ε,(8)

for all b in (c− ε, c+ γ − ε] and all 1 ≤ i ≤ n. Then,

c < bαi (b) < c+ δ − ε,(9)

for all b in (c, c+ γ − ε], and (bα1, ..., bαn) is a solution over (c, c+ γ − ε] of
the system of differential inequations (10)—considered in the same domain D
as the system (1)—below:

d

db
bαi (b) >

Fi (bαi (b))

fi (bαi (b))

1

n− 1

(
− n− 2bαi (b)− b

+
X
j 6=i

1bαj (b)− b

)
,(10)

1 ≤ i ≤ n.

Proof : See Appendix 2.

Lemma 4: Let Assumptions A.1 be satisfied. Assume ci = c and
di = d, for all i. Assume also that there exists δ > 0 such that F1, ..., Fn

are strictly log-concave over (c, c+ δ). Let (α1, ..., αn), γ, ε, and (bα1, ..., bαn)
be as in Lemma 3. Let (eα1, ..., eαn) be another solution of the system (1)
over the interval (c, γ] as in Lemma 3, that is, (eα1, ..., eαn) is a solution of

11This will be the case of any inverse equilibrium bid function, since, from C.1 (Section
3), any direct equilibrium bid function is differentiable when its value is strictly larger than
c. Actually, as shown in Lebrun (1999a and 1997), any solution of (1) and (3) over an
interval (γ, η] has strictly positive derivatives. For the sake of completeness, we replicate
the proof of this property in Appendix 1 (Lemma A1-2). In Section 5 and Appendix
5.1 (Lemma A5.1-4), we extend this property to the general case with possibly different
supports.
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(1)—considered in the domain D—over (c, γ] with strictly positive derivatives
over this interval and such that eαi (c+ γ) < c+ δ, for all 1 ≤ i ≤ n. If

bαi (c+ γ − ε) < eαi (c+ γ − ε) ,(11)

for all 1 ≤ i ≤ n, then bαi (b) < eαi (b) ,(12)

for all b in (c, c+ γ − ε] and all 1 ≤ i ≤ n.

Proof : See Appendix 2.

Proof of Theorem 1 (Section 2) in the Common-Support Case:
As we explain above, we can assume that the assumptions of C.3 are satis-
fied and we may replace (2) by (2”). Suppose that there exist two equilib-

ria (β1, ..., βn) and
³eβ1, ..., eβn´. The inverse bid functions (α1, ..., αn) and

(eα1, ..., eαn) are solutions, with strictly positive derivatives, of the differential
system (1) with boundary conditions (2”) and (3) for different values η andeη of the parameter. Without loss of generality, we can assume that eη < η.
From (2”), there exists 0 < γ < eη such that

eαi (c+ γ) < c+ δ, (13)

for all 1 ≤ i ≤ n. From Lemma 2 (Section 2), we know that αi (b) < eαi (b),
for all 1 ≤ i ≤ n and for all b in (c,eη], and thus that αi (c+ γ) < eαi (c+ γ),
for all 1 ≤ i ≤ n. Since eαi (c+ γ − ε) tends towards eαi (c+ γ) when ε tends
towards zero, there exists 0 < ε < γ such that

αi (c+ γ)− ε < eαi (c+ γ − ε) ,(14)

for all 1 ≤ i ≤ n.
For all 1 ≤ i ≤ n, define bαi as follows:

bαi (b) = αi (b+ ε)− ε,

for all b in (c− ε, η − ε]. From (14), we have (15) below:

bαi (c+ γ − ε) < eαi (c+ γ − ε) , (15)

for all 1 ≤ i ≤ n.
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From (13), (15), and Lemma 4, we have:

bαi (b) < eαi (b) , (16)

for all b in (c, c+ γ − ε] and for all 1 ≤ i ≤ n. Making b in (16) tend towards
c, we find, from (2”), bαi (c) = αi (c+ ε) − ε ≤ eα (c) = c, for all 1 ≤ i ≤ n.
However, since (c+ ε, α1 (c+ ε) , ..., αn (c+ ε)) belongs to the domain D of
(1), we have αi (c+ ε) > c + ε and, thus, bαi (c) = αi (c+ ε) − ε > c, for all
1 ≤ i ≤ n. We obtain a contradiction and we have proved Theorem 1. ||

5. Extension to Possibly Different Supports
5.1 Extension to Possibly Different Lower Extremities

In this section, we extend our proof of Theorem 1 (Section 2) from the
common-support case (Section 4) to the general case, with possibly different
supports. Consider first the case where only the lower extremities of the
supports may differ. The upper extremities are identical and we still denote
by d the common upper extremity, that is, d1 = ... = dn = d. We can again
assume that the reserve price is strictly smaller than d, that is, r < d. Let
the assumptions of Theorem 1 (Section 2) be satisfied12. Thus, the valuation
distributions are atomless, the support of F1 has the largest lower extremity,
and the support of F2 has the second largest, that is, ci ≤ c2 ≤ c1, for all
i ≥ 2.
The case where the reserve price r is not smaller than c1, that is, r ≥ c1,

can easily fit in the common-support case, which we addressed in the previous
section. It suffices, for example, to concentrate at r the probabilities spread
by the valuation distributions over the intervals [ci, r] in order to obtain
valuation distributions with the same support [r, d] that will give rise to the
same equilibria as the initial distributions. The results of the previous section
thus apply to this case. As in the previous section, when (i) in Theorem 1
(Section 2) holds true, that is, r > c1, the existence and uniqueness of the
equilibrium follow from U.2 (Section 3) and log-concavity is unnecessary.

12All our existence and uniqueness results actually hold true even when lower extremities
of the valuation intervals are mass points. However, contrary to the atomless case, the
equilibrium may involve a mixed component when the highest lower extremity c1 > c2 is
a mass point.
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Assume next r < c1. The results in Lebrun (1999a) according to which
every equilibrium is pure and such that its inverse bid functions satisfy the
differential system (1) and the initial condition (3) in the characterization C.1
(Section 3) go through to this case. However, the initial condition (2) has to
be changed. In general, there will exist an infinity of possible substitutes for
this initial condition and, thus, an infinity of equilibria. Focusing only on the
equilibria where the bids are not strictly larger than the valuations, that is,
eliminating weakly dominated strategies, allows to determine a unique initial
condition and to obtain uniqueness of the equilibrium. Maskin and Riley
(1996) and Lebrun (1999b) obtain this new initial condition (2”’) below,
which applies also to the case r ≥ c1, mainly by ruling out deviations by
bidder 1 with valuation max (r, c1) from β1 (max (r, c1)), which we denote by
v .

Definition 1: Let (A1) in Assumptions A.1 be satisfied. Assume
di > r, for all i. Let c(1) be the largest lower extremity and c(2) the second
largest lower extremity. Then, v is the element of

£
c(2), c(1)

¤
that is defined

in (17) below:

v = max arg max
b∈[max(r,c(2)),max(r,c(1))]

¡
c(1) − b

¢Y
i>1

Fi (b) (17).

C.4 Characterization with Possibly Different Lower Extremi-
ties: Let Assumptions A.1 be satisfied. Assume Fi (ci) = 0 and di = d > r,
for all i. Without loss of generality, assume also c1 ≥ c2 ≥ ci, for all
i ≥ 2.
The characterization C.1 holds true for equilibria where bidders submit at

most their valuations if 13 (2) is replaced by (2”’) below:

αi (v) = v, for all, except possibly one, i between 1 and n (2”’)

where v is as in Definition 1.

According to (17), v is the maximum of the arguments b that would
maximize bidder 1’s expected payoff (c1 − b)

Q
i>1 Fi (b) if his valuation was

13Obviously, the domain of the system (1) is here
{(b, α1, ..., αn) |ci, b < αi ≤ d, for all 1 ≤ i ≤ n}.
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c1 and if the other bidders bid their valuations. For the sake of completeness,
we provide a proof of (2”’) in Appendix 3 (see Lemma A3.2-2).
Under (ii) in Theorem 1 (Section 2), that is, if c1 > c2, Definition 1 of v

implies Fi (v) > 0, for all i > 1. In this case, uniqueness follows from U.2
(Section 3) by concentrating at v the probabilities Fi(v), for all i > 1.
If (i) and (ii) in Theorem 2 are not satisfied, that is, if c1 = c2 ≥ r,

Definition 1 of v implies c2 = c1 = v. From Lemma 1 (Section 3) and
from, since the valuation distributions are atomless, Fk (v) = Fk (ck) = 0, for
k = 1, 2, the initial condition (2”’) reduces to (2”) in C.3 (Section 3) where
c has been replaced by v = c1. Under the assumption (iii) in Theorem
1 (Section 2) of strict log-concavity in an interval (v, v + δ) = (c1, c1 + δ),
with δ > 0, the proof, from the previous section, for a common support goes
through to this case. Theorem 1 thus holds true when the upper extremities
of the supports are identical.

5.2 Extension to Possibly Different Lower and Upper Extremities

We now extend our proof of Theorem 1 (Section 2) to the case where
even the upper extremities of the supports may differ. Let the assumptions
of Theorem 1 (Section 2) be satisfied. Thus, ci ≤ c2 ≤ c1, for all i ≥ 2, and
Fi (ci) = 0, for all i. Let d(i) be the (n−i+1)th order statistics of (d1, ..., dn),
that is, the ith largest upper extremity. The n-tuple

¡
d(1), ..., d(n)

¢
is the n-

tuple (d1, ..., dn) rearranged by order of nonincreasing value. Since the case
where only one bidder can have valuations strictly larger than r is simple
and uninteresting14, we assume that d(2) > r.
We first extend the characterization C.4. The lowest serious bid v is

as defined in Definition 1 in the previous subsection. In any equilibrium,
the bidders whose valuations are never larger than v cannot obtain strictly
positive payoffs and engage only in “nonserious” bidding. Thus, the charac-
terization involves only those bidders who can have valuations strictly larger
than v. Let n0 be the number of those bidders and let J ⊆ I = {1, ..., n} be
the set of their indices. We have Definition 2 below.

Definition 2: Assume c1 ≥ c2 ≥ ci, for all i ≥ 2.

14At the unique equilibrium, no bidder bids strictly above r.
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(i)
¡
d(1), ..., d(n)

¢
is the n-tuple such that d(1) ≥ ... ≥ d(n) and there exists

a permutation π : {1, ..., n} → {1, ..., n} such that d(i) = dπ(i), for all i in
{1, ..., n}.
(ii) Assume d(2) > r. Then, J is the subset of {1, ..., n} such that

J = {j such that 1 ≤ j ≤ n and dj > v} .

(iii) Assume d(2) > r. Then, n0 is the number of elements of J, that is,
n0 = #J.

From the previous definition, if n0 < n then d(n0+1) ≤ v < d(n0). In order
to describe the new boundary condition at the maximum bid, we define the
integer-valued function k (η) and the real-valued function d (η) below.

Definition 3: Assume c1 ≥ c2 ≥ ci, for all i ≥ 2, and d(2) > r.

(i) For all η in
¡
v, d(2)

¢
, let k (η) ∈ {2, ..., n} be such that η < d(k(η))

and:

1

d(k(η)) − η
≤ 1

k (η)− 1
k(η)X
i=1

1

d(i) − η
,

and if η < d(k(η)+1) then
1

k (η)− 1
k(η)X
i=1

1

d(i) − η
<

1

d(k(η)+1) − η
.

(ii) For all η in
¡
v, d(2)

¢
, let d (η) be as follows:

d (η) = η +
k (η)− 1Pk(η)
i=1

1
d(i)−η

(18).

We show in Lemma A4.1 in Appendix 4 that, for all η in
¡
v, d(2)

¢
, there

exists one and only one k (η) as in Definition 3 (i) above. From the definitions
of d (η) and k (η) above, we have15

dk(η)+1 < d (η) ≤ dk(η).

15The first inequality below applies only when k (η) < n.
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C.5 below is our most general characterization.

C.5 Characterization with Possibly Different Lower and Upper
Extremities: Let Assumptions A.1 be satisfied. Assume Fi (ci) = 0, for
all i. Without loss of generality, assume c1 ≥ c2 ≥ ci, for all i ≥ 2. Let v
be as in Definition 1 and

¡
d(1), ..., d(n)

¢
as in Definition 2. Assume d(2) > r.

Let J, n0,and d (.) be as in Definitions 2 and 3.

There exists a Bayesian Nash equilibrium where bidders submit at most
their valuations. In every such equilibrium, bidder i ∈ J follows a bid func-
tion βi, for all 1 ≤ i ≤ n. Moreover, for every such equilibrium there exists η
in16

¡
v, d(2)

¢
such that, for all i ∈ J, there exists a continuous extension of βi

to the interval [v,max (di, d (η))] that is differentiable with a strictly positive
derivative everywhere over this interval, except possibly at di or when its value
is equal to v, and such that the inverses (αi)i∈J of these extensions, where
differentiable, satisfy the system of differential equations (1)—considered over
the domain D0 = {(b, α1, ..., αn) |ci, b < αi, for all 1 ≤ i ≤ n}—in C.1 (Sec-
tion 3), the boundary conditions (2”’) in C.4, and (3’) below:

αi (η) = max (di, d (η)) , (3’)

for all i ∈ J.

The above characterization can easily be proved as Lebrun (1999a) proved
the characterization C.1 (Section 3) with common supports17.
In the general characterization C.5, if i is such that v < di < d (η),

the bid function βi is extended to the interval [v, d (η)], which is strictly
larger than the actual support, truncated at v, [v, di] of bidder i’s valuation.
We also denote this extension by βi. When (1), (2”’), and (3’) hold true,
this extension is bidder i’s best reply function. Even if, according to Fi,
the valuation vi belongs to

£
di, d(η)

¤
with probability zero, βi (vi) is a best

response from bidder i with valuation vi in
£
di, d(η)

¤
.

As in the previous subsection, η is the highest bid that can actually
be submitted18. However, contrary to the previous subsection, only some
bidders bid η at the upper extremities of their valuation supports. As we

16Note that, from our definitions and assumptions, d(2) > v.
17For the sake of completeness, we provide the main steps of this proof in Appendix 3.2.
18It is the maximum of the support of the distribution of the highest bid.
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show in Appendix 3.2 (see also Maskin and Riley 1996), d (η) defined in
Definition 3 is the smallest upper extremity of the support at which a bidder
bids the highest bid η. Since any k such that dk = d(1) or dk = d(2) satisfies
the inequality dk ≥ d (η), (3’) implies that η is the actual maximum bid of
any bidder whose extremity of his support is the largest or the second largest.
On the other hand, if bidder k’s upper extremity of the support dk > v is
strictly smaller than d (η), bidder k’s actual maximum bid βk (dk) will be

19

strictly smaller than η.
Also as in the previous sections and subsection, no two solutions as in C.5

of (1) and (3’) can correspond to the same value of the parameter η. For all
i such that v < di < d (η), (3’) requires a value of αi at η that is outside the
support of Fi. Outside its support, the cumulative function Fi is constant
and the equation in (1) reduces to:

0 = − n0 − 2
αi (b)− b

+
X
j 6=i
j∈J

1

αj (b)− b
,(19)

for all i such that v < di < d (η). We obtain one such equation for all
i such that v < di < d (η). Solving the system these equations form, we
see that, for any such i, the function αi is determined by the functions αj,
with j such that dj ≥ d (η). Because this system is symmetric in αi and
since there are exactly k (η) values of j such that dj ≥ d (η), αi is equal to
the same function—the solution of the equation (20) below—for all i such that
v < di < d (η):

1

αi (b)− b
=

1

k (η)− 1
X
j

dj≥d(η)

1

αj (b)− b
(20).

Replacing in the system (1), the functions αi, i such that v < di < d (η), by
their expressions (20) as functions of αj, j such that dj ≥ d (η), we obtain
a system of differential equations with the only unknowns αj, j such that
dj ≥ d (η). This system is actually the system (1) we obtain when only the
k (η) bidders j, j such that dj ≥ d (η), are present. That is, it is the system

19Because the best reply function βk will be strictly increasing between dk and d (η).
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(21) below:

d

db
lnFj (αj (b)) =

1

k (η)− 1

⎧⎪⎪⎨⎪⎪⎩−
k (η)− 2
αj (b)− b

+
X
k 6=j

dk≥d(η)

1

αk (b)− b

⎫⎪⎪⎬⎪⎪⎭ , (21)
for all j such that dj ≥ d (η).
This last system (21) and the initial condition (3’) satisfy the standard

assumptions of the theory of ordinary differential equations and only one
solution exists. The initial condition (3’) thus locally determines αj, for all
j such that dj ≥ d (η), and, through the equations (19), the function αi, for
all i such that v < di < d (η). We then extend these unique solutions below
η until the common function αi, i such that di < d (η), takes as its value the
highest upper extremity strictly smaller than d (η). At the bid where this
next higher upper extremity will be reached, we will add all functions αi of
the bidders with this upper extremity of their supports to the system (21),
to which we may apply again the standard theory of differential equations.
The remaining functions αk will be determined through equations similar to
(21). Continuing in this fashion, we see that the value of the parameter η
determines the solution of (1) and (3’).

Moreover, the property, stated in Lemma 2 (Section 3), of monotonicity
of the solution of the differential system with respect to η extends to (1)
and (3’) (for a proof, see Lemma A5.2-2 in Appendix 5.2). The proof of
Theorem 1 can then proceeds as in the case of common upper extremities,
in the previous subsection.

6. Conclusion

We addressed the issue of uniqueness of the equilibrium in first-price
auctions with independent private valuations in the general case of possibly
different supports. By a simple geometric argument, consisting in “sliding” a
solution of the differential system down the 45-degree line, we showed that the
equilibrium is unique when the valuation cumulative distribution functions
are strictly log-concave near the highest lower extremity of their supports.
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Appendix 1

Lemma A1-1: Let Asssumptions A.1 be satisfied. Assume further
ci = c, di = d, for all i, and r ≤ c. Let (α1, ..., αn) be a solution over an
interval (γ, γ0], with c ≤ γ < γ0 < d, of the differential system (1) considered
in the domain D and such that d

db
α1 (γ

0) > 0,..., d
db
αn (γ

0) > 0. Then
d
db
α1 (b) > 0, ...,

d
db
αn (b) > 0, for all b in (γ, γ0].

Proof: For all 1 ≤ i ≤ n, consider b0i defined as follows:

b0i = inf
½
b0 ∈ [γ, γ0] | d

db
lnFi (αi (b)) > 0, for all b in (b0, γ0]

¾
.

For αi (b) ∈ (c, d], we have d
db
lnFi (αi (b)) > 0 if and only if d

db
αi (b) > 0

and d
db
lnFi (αi (b)) < 0 if and only if d

db
αi (b) < 0. From (1), we see that

d
db
lnF1α1, ...,

d
db
lnFnαn are continuous over (γ, γ0]. Since d

db
αi (γ

0) > 0, we
have d

db
lnFi (αi (γ

0)) > 0 and b0i < γ0, for all i. We want to prove that
b01, ..., b

0
n = γ. From their definitions, we know that b01, ..., b

0
n ≥ γ. We will

thus have proved Lemma A1-1 if we prove that maxk b0k ≤ γ.
Suppose that maxk b0k > γ. Let i be such that b0i = maxk b

0
k. From the

continuity of d
db
lnFiαi, we have d

db
lnFiαi (b

0
i) = 0 and, thus, d

db
αi (b

0
i) = 0.

Moreover, since b0i ≥ b0k we also have
d
db
lnFkαk (b

0
i) ≥ 0 and, thus, d

db
αk (b

0
i) ≥

0, for all 1 ≤ k ≤ n. From (1), we have:

(αi (b)− b)
d

db
lnFi (αi (b)) =

1

n− 1

(
− (n− 2) +

X
k 6=i

αi (b)− b

αk (b)− b

)
,

for all b in (γ, γ0]. Taking the derivative of the equation above, we obtain:

d

db

½
(αi (b)− b)

d

db
lnFi (αi (b))

¾
=

1

n− 1

(X
k 6=i

1

(αk (b)− b)2

∙µ
d

db
αi (b)− 1

¶
(αk (b)− b)− (αi (b)− b)

µ
d

db
αk (b)− 1

¶¸)
, (A1-1

for all b in (γ, γ0].
If we substitute b0i to b in (A1-1), the expression between brackets in the

sum in the R.H.S. is equal to (αi (b
0
i)− αk (b

0
i))−(αi (b

0
i)− b0i)

d
db
αk (b

0
i). From
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(1), we have d
db
lnFk (αk (b

0
i))− d

db
lnFi (αi (b

0
i)) =

1

αi(b0i)−b0i
− 1

αk(b0i)−b0i
, for all k.

Since d
db
lnFi (αi (b

0
i)) = 0 and

d
db
lnFk (αk (b

0
i)) ≥ 0, we have αi (b

0
i) ≤ αk (b

0
i),

for all k. The sum between brackets in the sum in the R.H.S. of (A1-1) is
thus nonpositive. Moreover, there exists k such that the corresponding term
is strictly negative. In fact, from equation (4) (with j = i) there exists k 6= i
such that d

db
lnFk (αk (b

0
i)) > 0 and, thus,

d
db
αk (b

0
i) > 0. Consequently, from

(A1-1) the derivative of the function (αi (b)− b) d
db
lnFi (αi (b)) at b = b0i is

strictly negative and this function is strictly decreasing in a neighborhood of
b0i. However, since

d
db
lnFi (αi (b

0
i)) = 0, the value of this function at b = b0i is

equal to zero. There thus exists ε > 0 such that (αi (b)− b) d
db
lnFi (αi (b)) <

0, for all b in (b0i, b
0
i + ε). Since (αi (b)− b) > 0, for all b in (γ, γ0], we obtain

d
db
lnFi (αi (b)) < 0, for all b in (b0i, b

0
i + ε). This contradicts the definition of

b0i and we have proved Lemma A1-1. ||

Lemma A1-2: Let Assumptions A.1 be satisfied. Assume further ci =
c, di = d, for all i, and r ≤ c. Let (α1, ..., αn) be a solution over (γ, η] of
(1) and (3) with c < η < d. Then, d

db
α1 (b) > 0, ...,

d
db
αn (b) > 0, for all b in

(γ, η].

Proof : By substituting in (1) η to b and d to αi (b), for all 1 ≤ i ≤ n, we
see that (3) implies d

db
αi (d) =

1
(n−1)fi(d)(d−η) > 0, for all 1 ≤ i ≤ n. Lemma

A1-2 then follows from Lemma A1-1. ||

In Lemma A5.1-4, we extend Lemma A1-2 to the model with possibly
different supports.

Proof of Lemma 2 (Section 3): From Lemma A1-2, α1, ..., αn are
strictly increasing over (γ, η] and thus αi (η

0) < α∗i (η
0) = d, for all 1 ≤ i ≤ n.

Define g in [max (γ, γ0) , η0] as follows:

g = inf {b ∈ [max (γ, γ0) , η0] |α∗i (b0) > αi (b
0) , for all 1 ≤ i ≤ n and all b0 ∈ (b, η0]} .

We want to prove that g = max (γ, γ0). We already know that g < η0.
Suppose that g > max (γ, γ0). By continuity, there exists 1 ≤ i ≤ n such
that α∗i (g) = αi (g). From the definition of g, we also have α∗j (g) ≥ αj (g),
for all 1 ≤ j ≤ n. Moreover, there exists j 6= i such that α∗j (g) > αj (g).
Otherwise, the solutions (α1, ..., αn) and (α∗1, ..., α

∗
n) of the differential system

(1) would coincide at g and, from the uniqueness of the solution of (1,3),
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over their common definition domain. However, this is impossible since
αk (η

0) < α∗k (η
0) = d, for all 1 ≤ k ≤ n.

From (1), d
db
αi (g) is a strictly decreasing function of αj (g), for all j 6=

i. Consequently, d
db
αi (g) >

d
db
α∗i (g). There thus exists δ > 0 such that

αi (b) > α∗i (b), for all b in (g, g + δ). This contradicts the definition of g and
Lemma 2 is proved. ||
In Lemma A5.2-2, we extend Lemma 2 to the model with possibly differ-

ent supports.

Appendix 2

Proof of Lemma 3 (Section 4): Let i be between 1 and n. Since αi

is strictly increasing over (c, c+ γ], so is bαi over (c− ε, c+ γ − ε] and, thus,bαi (b) < bαi (c+ γ − ε) = αi (c+ γ)−ε < c+δ−ε, for all b in (c− ε, c+ γ − ε]
and, in particular, for all b in (c, c+ γ − ε]. We have proved the second
inequality in (9).
Since (α1, ..., αn) is a solution of (1)—considered on the domain D—over

the interval (c, c+ γ], (b, α1 (b) , ..., αn (b)) belongs to this domain, for all b
in (c, c+ γ], and, thus, for b = c + ε. Consequently, αi (c+ ε) > c + ε andbαi (c) = αi (c+ ε)− ε > c, for all 1 ≤ i ≤ n. Since bαi (b) > bαi (c), for all b
in (c, c+ γ − ε] and all 1 ≤ i ≤ n, the first inequality in (9) follows.
From (8), we have d

db
bαi (b) =

d
db
αi (b+ ε) and, from (1) and the strict posi-

tivity of the derivative of αi, we find d
db
bαi (b) =

Fi(αi(b+ε))
fi(αi(b+ε))

1
n−1

n
− n−2

αi(b+ε)−b−ε +
P

j 6=i
1

αj(b+ε)−b−ε
o

> 0, for all b in (c, c+ γ − ε] and all 1 ≤ i ≤ n. From the definition (8) ofbαi, the difference αi (b+ ε)− b− ε is equal to the difference bαi (b)− b, for all

i. Consequently, d
db
bαi (b) =

Fi(αi(b+ε))
fi(αi(b+ε))

1
n−1

n
− n−2bαi(b)−b +Pj 6=i

1bαj(b)−b
o
. In the

first ratio of the R.H.S., we can replace αi (b+ ε) by its value bαi (b) + ε and
(bα1, ..., bαn) is a solution of (A2-1) below:

d

db
bαi (b) =

Fi (bαi (b) + ε)

fi (bαi (b) + ε)

1

n− 1

(
− n− 2bαi (b)− b

+
X
j 6=i

1bαj (b)− b

)
> 0,(A2-1)

for all b in (c, c+ γ − ε] and all 1 ≤ i ≤ n. Furthermore, from (9), bαi (b) andbαi (b)+ε belong to the interval (c, c+ γ] where Fi is strictly log-concave and,
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thus, where the ratio Fi/fi is strictly increasing. Consequently,
Fi(bαi(b)+ε)
fi(bαi(b)+ε) >

Fi(bαi(b))
fi(bαi(b)) , for all b in (c, c+ γ − ε] and all 1 ≤ i ≤ n, and (A2-1) implies (10).
||
Proof of Lemma 4 (Section 4): Let b∗ be the smallest argument b in

[c, c+ γ − ε) such that (12) holds true everywhere in (b, c+ γ − ε], that is,

b∗ = inf {b00 ∈ [c, c+ γ − ε] |bαi (b) < eαi (b) , for all b in (b00, c+ γ − ε] and all 1 ≤ i ≤ n} .
From (11), the set in this definition of b∗ is not empty. Suppose that b∗ > c.
Then, there exists i between 1 and n such that bαi (b

∗) = eαi (b
∗) and bαj (b

∗) ≤eαj (b
∗), for all j 6= i. From Lemma 3, we have

d

db
bαi (b

∗) >
Fi (bαi (b

∗))
fi (bαi (b∗))

1

n− 1

(
− n− 2bαi (b∗)− b∗

+
X
j 6=i

1bαj (b∗)− b∗

)
.

From bαi (b
∗) = eαi (b

∗) and bαj (b
∗) ≤ eαj (b

∗), for all j 6= i, the R.H.S. of the in-

equality above is not smaller than Fi(eαi(b∗))
fi(eαi(b∗)) 1

n−1
n
− n−2eαi(b∗)−b∗ +Pj 6=i

1eαj(b∗)−b∗
o
.

We thus obtain

d

db
bαi (b

∗) >
Fi (eαi (b

∗))
fi (eαi (b∗))

1

n− 1

(
− n− 2eαi (b∗)− b∗

+
X
j 6=i

1eαj (b∗)− b∗

)
.

However, from (1), the R.H.S. of this last inequality is d
db
eαi (b

∗) and, conse-
quently,

d

db
bαi (b

∗) >
d

db
eαi (b

∗) .

Since bαi and eαi coincide at b∗ and since, at the same point, the derivative ofbαi is strictly larger than the derivative of eαi, the function bαi must be larger
than eαi to the right of b∗, that is, there must exist ζ > 0 such that bαi (b) >eαi (b), for all b in (b∗, b∗ + ζ). However, this contradicts the definition of
b∗ and we have proved that b∗ cannot be strictly larger than c and is, thus,
equal to c. The inequalities (12) hold true for all b in (c, c+ γ − ε] and we
have proved Lemma 4. ||

Appendix 3
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In this appendix, we prove that the equilibrium strategies satisfy (2”’) and
(3’). We denote by Gi the continuous from the right cumulative distribution
function of bidder i’s marginal bid distribution. For any distribution H, we
denote its support by SuppH.
A strategy βi of bidder i defines

20 conditional bid probability distributions
βi (.|v), for all v in the support [ci, di] of Fi. A n-tuple (β1, ..., βn) of strategies
is a Bayesian Nash equilibrium if and only if βi (.|v) is a best reply against
the other bidders’ strategies, for all bidder i and for all valuation v in the
support of Fi.
For all i and v such that 1 ≤ i ≤ n and v ≥ r, we consider the function

(v − b) I {b ≥ r}Qj 6=iGj (b). The function I {b ≥ r} is the indicator func-
tion of the set {b ≥ r}. It is thus equal to 0 if b < r and to 1 if b ≥ r. We also
consider the following maximization problemmaxb∈R (v − b) I {b ≥ r}Qj 6=iGj (b).
This would be the maximization problem of bidder i with valuation v if bid-
der i won every tie in which he was involved. In this case,

Bi (v) = argmax
b∈R

(v − b) I {b ≥ r}
Y
j 6=i

Gj (b) (A3-1)

would be bidder i’s “best bid correspondence.” This correspondence Bi is
nonempty valued since the maximization problem has always at least one
solution. In fact, (v − b) I {b ≥ r}Qj 6=iGj (b) is nonpositive if b ≥ v, is
equal to 0 if b ≤ r, and is strictly positive and upper semi-continuous over
[r, v). We denote by biu (v) the supremum of Bi (v) and by bil (v) its infimum.
From its definition and following standard lines (or directly by log-super
modularity, see Milgrom and Shannon 1994 or Theorems 2.8.6 and 2.8.7 pp82-
83 in Topkis 1998), it is simple to prove (for a direct proof, see Appendix 6
in Appendix 1, Lebrun 1999b) that the correspondence Bi is nondecreasing
over

h
max(minSupp

Q
j 6=iGj, r),+∞

´
, that is, that biu (v) ≤ bil (v

0), for all

max(minSupp
Q

j 6=iGj, r) ≤ v < v0. Moreover, biu and bil are nondecreasing
over R.

For a n-tuple (β1, ..., βn) of strategies, we denote by Pi (v) bidder i’s (in-
terim) expected payoff when his valuation is v, when he bids according to
βi (.|v) , and when the other bidders bid according to βj, j 6= i. We also

20Technically, βi is a regular conditional probability distribution or a stochastic kernel.
See Lebrun 1999a and 1997.
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denote by Pi (v; b) and by Pr (i wins|b), bidder i’s expected payoff and proba-
bility of winning when his valuation is v, when he bids b, and when the other
bidders bid according to βj, j 6= i. Thus, Pi (v; b) = (v − b) Pr (i wins|b) and
the expected payoff Pi (v) is the expectation of Pi (v; b) when b is distributed
according to βi (.|v).
For any bid b ≤ v, bidder i with valuation v can obtain expected payoffs

approaching the nonnegative payoff (v − b) I {b ≥ r}Qj 6=iGj (b) by submit-
ting bids approaching b from above. Consequently, at any equilibrium the
correspondence Bi restricted to the support [ci, di] of Fi is actually the best
bid correspondence of bidder i and the expected payoff Pi (v) is equal to the
value of the maximization problem in the definition (A3-1) of Bi (v), for all i
and v such that v ∈ [ci, di]. Moreover, biu (v) is the supremum of the set of
bids b that give bidder i the same expected payoff Pi (v; b) as the distribution
βi (.|v) does, that is, such that Pi (v; b) = Pi (v), and bil (v) is the infimum of
this set, for all i and v such that v ∈ [ci, di].
Let v be the maximum of the reserve price and the minimum of the

support of the highest bid, that is, v = max (minSupp
Q

iGi, r). It is
straightforward to show that, at any equilibrium, no bidder bids a bid b >
v with (ex-ante or marginal) strictly positive probability. Consequently,
Pr (i wins|b) =Qj 6=iGj (b), for all i and b > v. The probability Pr (i wins|b)
that a bidder i wins the auction with a bid b is continuous with respect to
b > v and we havePi (v; b) = (v − b) Pr (i wins|b), for all i and b > v, and
Pi (v) = (v − biu (v)) Pr (i wins|biu (v)), for all v ∈ [ci, di] such that biu (v) >
v.

Appendix 3.1

Lemma A3.1-1: Let Assumptions A.1 be satisfied21. Assume also
d1, ..., dn > r. Without loss of generality, assume c1 ≥ c2 ≥ ci, for all
i ≥ 2. Let (β1, ..., βn) be a Bayesian Nash equilibrium where bidders do not
submit bids strictly larger than their valuations and let v be the minimum of
the support of the maximum of r and the highest bid. Then, we have

v = max arg max
b∈[max(r,c2),max(r,c1)]

(c1 − b)
Y
i>1

Fi (b) .

21Lemma A3.1-1 and its proof apply actually apply even if our only requirement on the
valuation distributions is that their supports be compacts.
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Proof: For all 1 ≤ i ≤ n, let mi be the maximum of ci and r, that
is, mi = max (ci, r) and let gi be the minimum of the support of bidder i’s
marginal bid distribution Gi. Then, v = max (maxi gi, r) = maxi (gi, r).
Since bidder i does not bid strictly above his valuation, we have gi ≤ ci and,
thus, max (gi, r) ≤ mi, for all i. Consequently, v ≤ m1 = maximi.

Let j be such that v = max (gj, r). Since bidder j bids at most his
valuation, we have v ≤ mj. Suppose that there exists i 6= j such that v < mi.
If max (gi, r) < v, we would have max (gi, r) < v < mi = ci. However, the
best response from bidder i with valuation vi ≥ ci cannot be strictly smaller
than v since his payoff would be zero, while he could obtain a strictly positive
payoff by submitting (v + ci) /2 instead. Consequently, max (gi, r) < v
is impossible and we have v ≤ max (gi, r). Since v < max (gi, r) would
contradict the definition of v, we must have v = max (gi, r). We have proved
that v = max (gi, r), for all i 6= j such that v < mi. From the definition of
j, we therefore have v = max (gi, r), for all i such that v < mi.
Suppose that there exist i and k such that v < mi and v < mk. In

particular, we have ci = mi, ck = mk > r. Bidder i with valuation vi ≥ ci
will not submit bids strictly below r, since such bids would bring him a zero
payoff, while he can obtain strictly positive payoffs. Consequently, gi ≥ r.
Similarly, gk ≥ r. Frommi,mk > v and the result of the previous paragraph,
we would have v = max (gi, r) = max (gk, r) and, thus, v = gi = gk. At
most one bidder among the bidders i and k can bid v with strictly positive
marginal probability22. Without loss of generality, assume bidder k bids v
with probability zero. Then bidder k submits bids strictly larger than gk = v
with probability one. Since gi = v, for all ε > 0 there exists a Borel set
of strictly positive Fi-measure such that bidder i bids within [v, v + ε) with
a strictly positive probability for all valuation vi in this set. However, as
ε tends towards zero the probability of winning tends towards zero and so
does the expected payoff for such bids, while by bidding instead (vi + v) /2,
for all such valuation vi, bidder i can obtain a fixed strictly positive expected
payoff. Consequently, there do not exist two such values i and k of the index
and we must have m2 ≤ v ≤ m1.
If m2 = m1, the lemma is immediate. For the rest of the proof, we

will thus assume that m2 < m1. As a particular consequence, we have
r < m1 = c1. From the definition of v, if max (g1, r) < v then there exists

22Otherwise, it would be in the best interest of one of them to submit slightly larger
bids.
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k > 1 such that max (gk, r) = v and, since v > r in this case, gk = v. Since
bidders do not bid strictly above their valuations, we have v ≤ ck = mk.
However, m2 ≤ v ≤ m1 and, thus, v = m2. The assumption m2 < m1

then implies v < m1. This last inequality and max (g1, r) < v contradict
the result of the second paragraph of this proof and, thus, max (g1, r) < v
is impossible. Consequently, v = max (g1, r). Since v ≤ m1 = c1, bidder 1
with valuation v1 > c1 does not bid strictly below r since it would give him
a zero payoff, while he can obtain strictly positive payoff. Consequently,
g1 ≥ r and v = g1.

Since v = g1 belongs to the support of bidder 1’s bid distribution and
from the monotonicity of the best bid correspondence already mentioned
above, there exists a sequence (vn, bn)n≤1 such that bn belongs to the support
of the bidder 1’s bid distribution β1 (.|vn) conditional on vn , such that vn
tends towardsm1 and bn tends towards v from above as n tends towards +∞,
and such that bn is a best response from bidder 1 with valuation vn, that is,
(vn − bn)

Q
j 6=1Gj (bn) ≥ (vn − b)

Q
j 6=1Gj (b), for all b ≥ maxj 6=1 (gj, r). By

making n tend towards +∞ in the previous inequality, we find (A3.1-1):

(m1 − v)
Y
j 6=1

Gj (v) ≥ (m1 − x)
Y
j 6=1

Gj (x) , (A3.1-1)

for all x ≥ maxj 6=1 (gj, r) and in particular for all x in23 [m2,m1].
The inequality (A3.1-1) already allows us to rule out the case v = m1.

In fact, if v = m1 the L.H.S. of (A3.1-1) is equal to zero while the R.H.S. is
strictly positive for m2 < x < m1, since gj ≤ m2, for all j 6= 1. We thus
have v < m1. Since bidders do not bid strictly higher than their valuations,
we have Gj (x) ≥ Fj (x), for all x, and, thus:

(m1 − v)
Y
j 6=1

Gj (v) ≥ (m1 − x)
Y
j 6=1

Fj (x) ,(A3.1-2)

for all x in [m2,m1].
In this paragraph, we show that Gj (v) = Fj (v), for all j 6= 1. Since g1 =

v, bids b < v from bidder j 6= 1 have a zero probability of winning (either v =
r and b is strictly smaller than the reserve price or v = g1 > r and b is strictly
smaller than the bid from bidder 1 with probability one). Consequently,
bidder j 6= 1 with valuation vj > v will not submit a bid strictly smaller than

23maxj 6=1 (gj , r) ≤ maxj 6=1 (cj , r) = m2.
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v. Since bidder j does not bid strictly above his valuation, bidder j with
valuation vj ≤ v will only submit bids b ≤ v. The only way Gj (v) may thus
be different from Fj (v) is if, with strictly positive probability, bidder j with
valuation vj > v bids v. If this is the case the bid v from bidder j 6= 1 must
have a strictly positive probability of winning and thus G1 (v) = G1 (g1) > 0
and v must be a mass point of bidder 1’s bid distribution. It is then in the
best interest of bidder j with valuation vj > v to bid slightly above v rather
than at v. This is impossible at an equilibrium and we find Gj (v) = Fj (v),
for all j 6= i. Then (A3.1-2) implies (A3.1-3) below:

(m1 − v)
Y
j 6=1

Fj (v) ≥ (m1 − x)
Y
j 6=1

Fj (x) , (A3.1-3)

for all x in [m2,m1], and v belongs to maxb∈[m2,m1] (m1 − x)
Q

i>1 Fi (x).
Suppose next that there exists x0 > v in [m2,m1] such that (m1 − v)

Q
j 6=1 Fj (v) =

(m1 − x0)
Q

j 6=1 Fj (x
0). From (A3.1-1) and Gj (x) ≥ Fj (x), for all x and j,

we have

(m1 − v)
Y
j 6=1

Fj (v) ≥ (m1 − x0)
Y
j 6=1

Gj (x
0) ≥ (m1 − x0)

Y
j 6=1

Fj (x
0) .

Consequently, we have

(m1 − v)
Y
j 6=1

Fj (v) = (m1 − x0)
Y
j 6=1

Gj (x
0) = (m1 − x0)

Y
j 6=1

Fj (x
0) (A3.1-4).

From the second equation in (A3.1-4) and the strict positivity of the value
of the maximization problem maxx∈[m2,m1] (m1 − x)

Q
i>1 Fi (x) (when m2 <

m1), we obtain
Q

j 6=1Gj (x
0) =

Q
j 6=1 Fj (x

0) > 0. Since Gj (x
0) ≥ Fj (x

0), for
all j, we findGj (x

0) = Fj (x
0), for all j 6= 1. For all j and x0 > v, bju (x0) < x0

(if bju (x0) ≥ x0, bju (x0) > v and thus maxb∈R (x0 − b) I {b ≥ r}Qk 6=j Gk (b) =
Pj (x

0; bju (x0)) ≤ 0, which is impossible since bidder j can obtain a strictly
positive payoff by bidding strictly between v and x0). From the monotonicity
of Bj, bidder j with valuation vj ≤ x0 bids at most bju (x0). We thus have
Fj (x

0) ≤ Gj (bju (x
0)) ≤ Gj (x

0) = Fj (x
0), for all j 6= 1, andGj ((bju (x

0) , x0]) =
0, for all j 6= 1. However, it is simple to show (for example, as in Lebrun
1999a or 1997), that at least two bidders bid with a strictly positive proba-
bility in the neighborhood of every bid between v and the maximum η of the
support of the highest bid (η = max1≤i≤n SuppGi). Consequently, x0 must
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be strictly larger than η. Take x00 such that η < x00 < x0. Then, from (A3.1-
4) we have (m1 − v)

Q
j 6=1 Fj (v) < (m1 − x00)

Q
j 6=1Gj (x

00) = (m1 − x00).
This inequality contradicts (A3.1-1) and the equality (m1 − v)

Q
j 6=1Gj (v) =

(m1 − v)
Q

j 6=1 Fj (v). There must thus not exist x0 as in the top of this para-
graph. We have proved that v is equal tomaxargmaxb∈[max(r,c2),max(r,c1)] (max (r, c1)− b)

Q
i>1 Fi (b).

The lemma then follows. ||

Appendix 3.2

Once v is determined according to Lemma A3.1-1, in order to study the
equilibrium strategies above v we can assume that di > v, for all i, that is,
that J = {1, ..., n}, where J is as defined in Definition 2 (Section 5). If di
was not strictly larger than v, then bidder i would never submit bids strictly
above v at the equilibrium. The other bidder’s “serious bidding behaviors,”
that is, their bids above v would not be affected if we simply dropped bidder
i from the list of bidders. Since, in this subappendix, we will work more
with the upper extremities d1, ..., dn than with the lower extremities c1, ..., cn,
we drop our assumption c1 ≥ c2 ≥ ci, for all i ≥ 2, and we assume rather
that di is nonincreasing in i. Thus, we have v < dn ≤ dn−1 ≤ ... ≤ d2 ≤ d1,
with v as in Definition 1 (Section 5) where c1 and c2 have been replaced
by, respectively, the largest lower extremity c(1) and the second largest lower
extremity c(2). We thus make the following assumptions.

Assumptions A.2:

v < dn ≤ dn−1 ≤ ... ≤ d2 ≤ d1, where v is as defined in Definition 1
(Section 5).
It can easily be shown that the distribution of the highest acceptable

bid is not degenerate, that is, is not concentrated at v. With some strictly
positive probability, strictly higher bids are submitted.

Lemma A3.2-1: Let Assumptions A.1 and A.2 be satisfied. Let
(β1, ..., βn) be a Bayesian Nash equilibrium where bidders bid at most their
valuations and let η be the maximum of b1u (d1),...,bnu (dn). If biu (di) = η
and dj ≥ di, then bju (dj) = η, for all i, j.

Proof : Since, as we previously observed, the highest submitted bid is
strictly larger than v with strictly positive probability, we must have η > v.
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Let i and j be such that biu (di) = η , dj ≥ di, and j 6= i. Since η wins
with a strictly positive probability (equal to 1), we must have di > η and,
thus, dj > η. Since η > v, biu (di) = η ∈ Bi (di). There exists m such that:

Pj (dj;m) = Pj (dj) .

Then, m ∈ Bj (dj) and bjl (dj) ≤ m ≤ bju (dj). Moreover, m cannot be
strictly smaller than v. Otherwise, from the monotonicity of Bj (dj) and
from Fj ({dj}) = 0, v would not belong to the support of Gj, which would
contradict the definition of v. Thus, m ≥ v. From the definitions of Bi (di)
and η and from Gj (m) = 1, we find:

di − η = (di − η)
Y
k 6=i

Gk (η) ≥ (di −m)
Y
k 6=i

Gk (m) = (di −m)
Y
k 6=i,j

Gk (m) .

An immediate consequence of the previous inequality and of the inequality
dj ≥ di is (A3.2-1) below:

dj − η ≥ (dj −m)
Y
k 6=i,j

Gk (m) (A3.2-1).

From the continuity from the right of
Q

k 6=j Gk and the definition ofm, we
have (dj −m)

Q
k 6=j Gk (m) = (dj −m)Gi (m)

Q
k 6=i,j Gk (m) ≥ Pj (dj;m) =

Pj (dj). (A3.2-1) thus implies:

Pj (dj; η) ≥ Pj (dj) .

Thus, Pj (dj; η) = Pj (dj), η is an optimal bid for bidder j with valuation dj,
and η ≤ bju (dj). From the definition of η in the statement of the lemma,
η ≥ bju (dj) and, consequently, η = bju (dj). ||
Let η be the maximum of the support of the highest bid. Since no bid

strictly larger than η can be an optimal bid, we have biu (di) ≤ η, for all
i. From the definition of η, it must belong to the support of at least one
bid distribution and must thus be among the optimal bids of at least one
bidder. From the monotonicity of biu, there must exist a bidder i such that
biu (di) = η. If there was only one such bidder, all the other bidders would
bid strictly below η with probability one, and η would not be an optimal
bid for bidder i since a slightly smaller bid would give him a strictly higher
expected payoff. There must thus exist at least two bidders i and j, i 6= j,
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such that biu (di) = bju (dj) = η. From the previous lemma, for any other
bidder k such that dk ≥ di or dk ≥ dj, we have bku (dk) = η. In particular,
bku (dk) = η, for all k = 1, 2 and, thus, η < d2.
As in Lebrun (1999a), we can show that the functions biu and bil are iden-

tical between them, continuous, and strictly increasing where, over [ci, di],
their values are strictly larger than v. The equilibrium strategies thus never
mix between several bids strictly larger than v. At an equilibrium, a bidder
i with valuation v bids βi (v) = biu (v) = bil (v), for all v in [ci, di] such that
biu (v) > v.
If r ≥ c1, then v as defined in Lemma A3.1-1 is equal to r and, as in

the common-support case, (2) and, thus, (2”’) hold true. From the proof of
Lemma A3.1-1, if r < c1 then g1 = v , v is the minimum serious bid bidder
1 submits, and bidder 1 bids at least v with probability one, with v as in
Lemma A3.1-1 or as Definition 1 (Section 5). Bidder j with valuation vj
bids at least v and has a strictly positive payoff instead of the zero payoff
he would obtain by submitting a bid strictly smaller than v, for all j > 1
and all vj > v. Thus, the minimum of the serious bids every bidder submits
is v. Of course, no two bidders can submit v with a (ex-ante or marginal)
strictly positive probability, since otherwise there would be a strictly positive
probability of a tie at v and it would be in the best interest of either of these
two bidders to bid slightly higher. (2”’) follows.
Furthermore, as in Lebrun (1999a), the inverses α1, ..., αn of these bid

functions can be shown to form a solution of the system (1) with initial
condition (A3.2-2) below:

αi (η) = di, for all i such that di ≥ d2,

αj

¡
ηj
¢
= dj, for all j such that dj < d2(A3.2-2).

In (A3.2-2), η is the maximum of the support of the highest bid and the
first part of (A3.2-2) follows from Lemma A3.2-1. ηj is the maximum of the
support of bidder j’s bid. The following lemma then follows.

Lemma A3.2-2: Let Assumptions A.1 and A.2 be satisfied. Assume
also Fi (ci) = 0, for all i. Let (β1, ..., βn) be a Bayesian Nash equilib-
rium where bidders bid at most their valuations. Then, the strategy βi is
a nondecreasing bid function not smaller than v over (v, di] and strictly in-
creasing and differentiable when its value is strictly larger than v, for all
i. Moreover, there exists η in (v, d2) and ηj in (v, dj), for all j such that
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dj < d2, such that the inverse bid functions α1 = β−11 , ..., αn = β−1n are solu-
tions of the system (1) of differential equations—considered over the domaineD = {(b, α1, ..., αn) |v, b < αi ≤ di, for all 1 ≤ i ≤ n}—with boundary condi-
tions (2”’) (in C.4 Section 5, with v defined in Definition 1) and (A3.2-2).

We next show that if bidder i submits η at his upper extremity of this
support, that is, ηi = η, then di is not smaller than d (η) defined in Definition
3 (Section 5).

Lemma A3.2-3: Let Assumptions A.1 and A.2 be satisfied. Assume
also Fi (ci) = 0, for all i. Let η and ε be such that η < di, for all 1 ≤ i ≤ k,
and ε > 0. Let (α1, ..., αk) be a strictly increasing solution over [η − ε, η] with
values in

Qk
i=1 (ci, di] of the differential system (A3.2-3) and initial condition

(A3.2-4) below:

d

db
lnFi (αi (b)) =

1

k − 1

(
− k − 2
αi (b)− b

+
X
k 6=i

1

αj (b)− b

)
, for all 1 ≤ i ≤ k, (A3.2-3)

αi (η) = di, for all 1 ≤ i ≤ k, (A3.2-4).

Then, the following inequalities hold true:

di ≥ d (k, η) , 1 ≤ i ≤ k,

where

d (k, η) = η +
k − 1Pk
i=1

1
di−η

or, equivalently,

1

d (k, η)− η
=

1

k − 1
kX
i=1

1

di − η
(A3.2-5).

Proof : It suffices to prove

dk ≥ d (k, η) (A3.2-6)
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Since lnFiαi is strictly increasing over (η − ε, η], we have d
db
lnFk (αk (η)) ≥ 0.

From (A3.2-3) and (A3.2-4), we thus have

k − 2
dk − η

≤
k−1X
j=1

1

dj − η
.

Adding 1
dk−η to both sides of the previous inequality and dividing by (k − 1),

we find:
1

dk − η
≤ 1

k − 1
kX

j=1

1

dj − η
.

From the definition of d (k, η), the R.H.S. of the last inequality is equal to
1

d(k,η)−η . (A3.2-6) follows immediately. ||
In the following proofs, the following notations will prove convenient.

Definition A3.2-1:

(i) For all integers n and k, we denote by En,k the n × k matrix
whose all components are equal to 1, that is:

En,k = in,1i
0
n,1 =

⎛⎜⎜⎝
1 1 ... 1
1 1 1 1
... ... ... ...
1 ... 1 1

⎞⎟⎟⎠ ,
where in,1 is the column vector whose all n components are equal to 1.

(i) For all integer n, we denote the square n×n matrix En,n simply
by En, the square n× n identity matrix by In, and the square n× n matrix
En − In by Kn. We have:

En = En,n, In =

⎛⎜⎜⎝
1 0 ... 0
0 1 0 0
... ... ... ...
0 ... 0 1

⎞⎟⎟⎠ , Kn = En − In =

⎛⎜⎜⎝
0 1 ... 1
1 0 1 1
... ... ... ...
1 ... 1 0

⎞⎟⎟⎠ .
The matrix Kn above is, thus, the n × n matrix whose all components

on the main diagonal are equal to 0 and all off-diagonal components are
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equal to 1. The technical lemma below follows easily from the equality
K2

n = (n− 1) In + (n− 2)Kn.

Lemma A3.2-4: For all integer n ≥ 1 and for all real number x, the
matrix xIn + Kn, where In and Kn are as in Definition A3.2-1, is regular
(invertible) if and only if x 6= 1 and x 6= − (n− 1), in which case we have:

(xIn +Kn)
−1 =

1

(x− 1) (x+ n− 1) {(x+ n− 2) In −Kn} .

Lemma A3.2-5: Let Assumptions A.1 and A.2 be satisfied. Assume
also Fi (ci) = 0, for all i. Let (β1, ..., βn) be a Bayesian Nash equilibrium
where bidders bid at most their valuations. Then, the strategies are pure
for the valuations strictly larger than v and there exist η in

¡
v, d(2)

¢
and

ηi < di, η, for all i such that di < d (η), such that (α1, ..., αn) is a solution of
the system (1) and the initial condition (A3.2-7) below:

αi (η) = di, for all i such that di ≥ d (η) , or, equivalently, such that i ≤ k (η)

αi (ηi) = di, for all i such that di < d (η) , or, equivalently, such that i ≥ k (η) + 1. (A3.2-7)

Proof : We know that the equilibrium is pure for the valuations strictly
larger than v and that there exists ηi < di, for all 1 ≤ i ≤ n, such that
the inverse bid functions α1, ..., αn are solutions of the system (1) and initial
conditions below:

αi (ηi) = di, 1 ≤ i ≤ n.

Let η be equal to the maximum of η1, ..., ηn. From (A3.2-2), ηi = η < d2,
for all i such that di ≥ d2. From Lemma A3.2-1, for all 1 ≤ i ≤ n, if
ηi = η, then ηj = η, for all j such that j ≤ i. There thus exists k ≥ 2 such
that ηi = η, for all i such that i ≤ k, and ηi < η, for all i such that i > k.
From Lemma A3.2-3, dk ≥ d (k, η). Consequently, there exists k such that
(α1, ..., αn) satisfies the initial conditions below:

αi (η) = di, for all i such that 1 ≤ i ≤ k,

αi (ηi) = di, for all i such that k + 1 ≤ i ≤ n,

with dk ≥ d (k, η) and di < dk and ηi < η, for all i such that i ≥ k + 1.
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Let η0 be the maximum of the ηi, for i such that i ≥ k + 1. Only the
bidders 1, ..., k bid in (η0, η] and over this interval (αi)1≤i≤k is a solution of
the system below:

d

db
lnFi (αi (b)) =

1

k − 1

(
− k − 2
αi (b)− b

+
X
k 6=i

1

αj (b)− b

)
, for all 1 ≤ i ≤ k.(A3.2-8)

For all i ≥ k+1, define over (η0, η] the function αi as the same unique solution
of the equation below:

1

αi (b)− b
=

1

k − 1
kX

j=1

1

αj (b)− b
.(A3.2-9)

As we have defined these functions, we have αk+1 = ... = αn, over (η0, η], and
αk+1 (η) = ... = αn (η) = d (k, η). (A3.2-9) can be rewritten in matrix form
as (A3.2-10) belowµ

1

αi (b)− b

¶
k+1≤i≤n

=
1

k − 1En−k,k

µ
1

αj (b)− b

¶
1≤j≤k

, (A3.2-10)

where En−k,k is as defined in Definition A3.2-1. As a simple computation
shows, the equality below holds true:

1

k − 1En−k,k =
1

(k − 1) (n− 1) (kIn−k +Kn−k)En−k,k, (A3.2-11)

where In−k and Kn−k are as in Definition 3.2-1. Substituting its value from
(A3.2-11) to 1

k−1En−k,k in (A3.2-10), we find that
³

1
αi(b)−b

´
k+1≤i≤n

is equal

to 1
(k−1)(n−1) (kIn−k +Kn−k)En−k,k

³
1

αj(b)−b
´
1≤j≤k

and thus

− (k − 1) (n− 1) (kIn−k +Kn−k)
−1
µ

1

αi (b)− b

¶
k+1≤i≤n

+En−k,k

µ
1

αj (b)− b

¶
1≤j≤k

= (0)k+1≤i≤n .

Since, from LemmaA3.2-4, (k − 1) (n− 1) (kIn−k +Kn−k)
−1 = (n− 2) In−k−

Kn−k, we have

− ((n− 2) In−k −Kn−k)
µ

1

αi (b)− b

¶
k+1≤i≤n

+En−k,k

µ
1

αj (b)− b

¶
1≤j≤k

= (0)k+1≤i≤n ,
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or, equivalently,

1

n− 1

(
− n− 2
αi (b)− b

+
X
j 6=i

1

αj (b)− b

)
= 0, (A3.2-12)

for all k + 1 ≤ i ≤ n. Since Fi (αi (b)) = 0, for all b in (η0, η] and all
k + 1 ≤ i ≤ n, we have d

db
lnFi (αi (b)) = 0, for all b in (η0, η] and all

k + 1 ≤ i ≤ n. From (A3.2-12), the equations in (1) for k + 1 ≤ i ≤ n thus
hold true over (η0, η].
The system (A3.2-8) can be rewritten under matrix form as (A3.2-13)

below:µ
d

db
lnFi (αi (b))

¶
1≤i≤k

=
1

k − 1C
µ

1

αj (b)− b

¶
1≤j≤k

, (A3.2-13)

where C = − (k − 2) Ik + Kk, with Ik and Kk as in Definition A3.2-1. A
simple computation shows that the following equality between matrices holds
true:

1

k − 1C =
1

n− 1
½
n− k

k − 1Ek − (n− 2) Ik +Kk

¾
, (A3.2-14)

where Ek is as defined in Definition A3.2-1. From (A3.2-13) and (A3.2-14),
we find:µ
d

db
lnFi (αi (b))

¶
1≤i≤k

=
1

n− 1

(
n− k

k − 1Ek

µ
1

αj (b)− b

¶
1≤j≤k

+B

µ
1

αj (b)− b

¶
1≤j≤k

)
,(A3.2-15)

where B = − (n− 2) Ik+Kk. Multiplying both sides of (A3.2-10) to the left
by the transpose Ek,n−k of En−k,k and making use of the immediate equality
Ek,n−k.En−k,k = (n− k)Ek, we obtain

Ek,n−k

µ
1

αi (b)− b

¶
k+1≤i≤n

=
n− k

k − 1Ek

µ
1

αj (b)− b

¶
1≤j≤k

(A3.2-16).

Substituting its value from (A3.2-16) to n−k
k−1Ek

³
1

αj(b)−b
´
1≤j≤k

in (A3.2-15),

we find that
¡
d
db
lnFi (αi (b))

¢
1≤i≤k is equal to

1
n−1

½
Ek,n−k

³
1

αi(b)−b
´
k+1≤i≤n

+B
³

1
αj(b)−b

´
1≤j≤k

¾
or, equivalently,

d

db
lnFi (αi (b)) =

1

n− 1

(
− n− 2
αi (b)− b

+
X
j 6=i

1

αj (b)− b

)
,
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for all b in (η0, η] and all 1 ≤ i ≤ k. All equations in (1) thus hold true over
(η0, η] and (α1, ..., αn) is a solution over (η0, η] of the system (1). Moreover,
from Lemma A5.1-4, d

db
αk+1(b) = ... = d

db
αn(b) > 0, for all b in (η0, η).

Let i be not smaller than k+1 and let v be in [di, d1]. If bidder i with valu-
ation v submits b in [η0, η], his expected payoff is equal to (v − b)

Qk
j=1 Fj (αj (b)).

The logarithmic derivative of this expected payoff is equal to −1
v−b+

Pk
j=1

d
db
ln (Fj (αj (b))).

However, by adding all the equations in (A3.2-8), we see that
Pk

j=1
d
db
ln (Fj (αj (b)))

is equal to 1
k−1

Pk
j=1

1
αj(b)−b . Consequently, from the definition (A3.2-9), the

logarithmic derivative of the expected payoff satisfies the equation below:

d

db
ln

(
(v − b)

kY
j=1

Fj (αj (b))

)
=
−1
v − b

+
1

αj (b)− b
(A3.2-17).

Assume that di ≥ d (k, η) with i ≥ k + 1. Then, since αi (η) =
d (k, η) and αi is strictly increasing, (A3.2-17) implies that the derivative
d
db
ln
n
(di − b)

Qk
i=1 Fi (αi (b))

o
is strictly positive, for all b in [ηi, η) and

v = di. Since η gives a strictly higher expected payoff, ηi < η is not
a best reply from bidder i with valuation di, as it should at an equilib-
rium. This is impossible and, thus, di < d (k, η), for all i ≥ k + 1. Since
dk+1 < d (k, η) ≤ dk, we must have k = k (η), di < d (k (η) , η), for all
i ≥ k + 1, and di ≥ d (k (η) , η), for all i ≤ k. Since d (η) = d (k (η) , η), the
lemma is proved. ||
Lemma A3.2-6: Let Assumptions A.1 and A.2 be satisfied. Assume

also Fi (ci) = 0, for all i. Let (β1, ..., βn) be an equilibrium. Then, the bid
functions can be extended over larger intervals as best reply functions such
that their inverses form a solution of the system (1) with initial condition
(3’) in C.4 (Section 5) for J = {1, ..., n} and for a certain η in

¡
v, d(2)

¢
.

Proof : Let η0 be the maximum of ηi, for i > k (η). For all i ≥ k (η)+1,
we define αi over (η0, η] as in (A3.2-9). From (A3.2-9), we have αi (η) = d (η),
for all i ≥ k (η) + 1. As in the proof of the previous lemma, we can show,
from (A3.2-8) and (A3.2-9), that (α1, ..., αn) is a solution of (1) over (η0, η].
We now show that, if αi is so defined, then limb→>ηi αi (b) = di, for all
i ≥ k (η) + 1 such that ηi = η0. Let i be such an index. Since ηi must be
a best response from bidder i with valuation di, the (right-hand) derivative
(A3.2-17) at v = di and b = ηi must not be strictly positive. Thus, we find
limb→>ηi αi (b) ≥ di.
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Let j be the largest value of the index such that j ≥ k (η)+1 and ηj = η0.
Over an interval [η0 − ε, η0], with ε > 0, the inverses of the bid functions
(βl)l s.t.ηl≥η0 satisfy the system below, similar to (A3.2-8):

d

db
lnFi (αi (b)) =

1

s− 1

⎧⎪⎪⎨⎪⎪⎩−
s− 2

αi (b)− b
+
X
k 6=i
ηk≥η0

1

αj (b)− b

⎫⎪⎪⎬⎪⎪⎭ , (A3.2-18)
for all i such that ηi ≥ η0 and all b in [η0 − ε, η0]. In (A3.2-18), s is the number
of index values l such that ηl ≥ η0 and αi is the inverse of bidder i’s equi-
librium bid function. Since βj is strictly increasing,

dl
db
lnFj (αj (η

0)) ≥ 0, and
we find24 − s−2

αj(η0)−η0+
P

i6=j
ηi≥η0

1
αi(η0)−η0 ≥ 0. From (A3.2-9), 1

k(η)−1
Pk(η)

j=1
1

αj(η0)−η0 =

1
limb→>η0 αj(b)−η0 . We obtain:

− s− 2
dj − η0

+
X

i≥k(η)+1
i6=j
ηi≥η0

1

di − η0
+

k (η)− 1
limb→>η0 αj (b)− η0

≥ 0.

Since ηi < η, for all i ≥ k (η) + 1, and di ≥ dj, for all j ≥ i, we haveP
i≥k(η)+1

i6=j
ηi≥η0

1
di−η0 =

P
i≥k(η)+1

i6=j
ηi=η

0

1
di−η0 ≤

P
i≥k(η)+1

i6=j
ηi=η

0

1
dj−η0 =

s−k(η)−1
dj−η0 . We thus

find:

−k (η)− 1
dj − η0

+
k (η)− 1

limb→>η0 αj (b)− η0
≥ 0.

Consequently, limb→>η0 αj (b) ≤ dj. From our definition of j, we thus have
limb→>η0 αi (b) ≤ di, for all i ≥ k (η) + 1 such that ηi = η0.
We have proved that limb→>η0 αi (b) = di, for all i ≥ k (η) + 1 such that

ηi = η0. As a particular consequence, we have di = dj, for all i and j such
that ηi = ηj = η0.
For all i ≥ k (η)+1 such that ηi = η0, we can thus define over [v, d (η)] the

continuous function αi that is equal to the inverse of the bid function βi over
[v, di] and to the function defined in (A3.2-9) over [di, d (η)]. Proceeding as
in the proof of the previous lemma, we can see, from (A3.2-9) and (A3.2-8),

24Here, αj (η0) and αi (η
0) are the limits from the left of αj and αi at η0. That is, for

example, αj (η0) = limb→<η0 αj (b).
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that the inverses α1, ..., αk(η), αi, i ≥ k (η) + 1 such that ηi = η0, satisfy the
system (A3.2-18) over the interval (η00, η], where s is the number of index
values i such that ηi ≥ η0 and where η00 is the maximum of the ηj such that
ηj < η0.
We then define αi, for all i ≥ k (η) + 1 such that ηi < η0, over (η00, η0) as

follows:
1

αi (b)− b
=

1

s− 1
X
j

ηj≥η0

1

αj (b)− b
.

For all such i, it is simple to show that the continuous extension of αi so
defined at η0 agrees with the continuous extension of αi as we defined it over
(η0, η]. Again, from Lemma A5.1-4, αi is strictly increasing, and, proceeding
as in the proof of the previous lemma, we can then show that (α1, ..., αn)
is a solution of (1) and (3’) over (η00, η]. As above, we can also show that
limb→>η00 αi (b) = di, for all i ≥ k (η) + 1 such that ηi = η00, and di = dj, for
all i and j such that ηi = ηj = η00.
Repeating this construction, we see that the inverses of the bid functions

can be extended into solutions of (1) and (3’). Equivalently, the bid functions
can be extended such that the inverses of the extensions form a solution of
(1) and (3’). Moreover, the extensions of the bid functions for different
bidders agree in the complements of their valuation supports in the interval
[v, d (η)]. Consequently, for all i, j such that di, dj ≤ d (η), ηi < ηj if and
only if di < dj. From (A3.2-17), we can easily show that the value of the
extension of the bid function βi at vi in [di, d (η)] is the best bid from bidder
i with valuation vi. ||

The characterization C.4 (Section 4) follows from Lemmas A3.2-2 and
A3.2-6.

Appendix 4

Lemma A4-1: Assume d1 ≥ ... ≥ dn. For all η < d2, there exists one
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and only one k such that

η < dk,
1

dk − η
≤ 1

k − 1
kX
i=1

1

di − η

and

if η < dk+1, then
1

k − 1
kX
i=1

1

di − η
<

1

dk+1 − η
.(A4-1)

Proof : Let l be the largest value of the index i such that η < di. From
η < d2, we have l ≥ 2. Either l = n and η < di, for all 1 ≤ i ≤ n, or l < n
and dl+1 ≤ η < dl. Consider j such that 2 ≤ j ≤ l. A simple computation
shows that the inequality 1

dj−η ≤ 1
j−1
Pj

i=1
1

dj−η is equivalent to the inequality
(A4-2) below

j−1X
i=1

di − dj
di − η

≤ 1 (A4-2).

Let Λ be the function defined over {1, ..., l} whose value at j is equal to the
L.H.S. of (A4-2). Since di is nonincreasing in i and since η < dl, Λ is a nonde-
crasing function. Consequently, k = max {j such that 1 ≤ j ≤ l and Λ (j) ≤ 1}
is the only value of the index that satisfies (A4-1). ||

Appendix 5

In this appendix, we consider the system (1) of differential equations over
the domain D0 = {(b, α1, ..., αn) |ci < αi and b < αi, for all i}. A n-tuple
(α1, ..., αn) of continuous functions over (γ, γ0], with γ < γ0, is piecewise dif-
ferentiable if and only if α1, ..., αn are differentiable everywhere in (γ, γ0] ex-
cept, possibly, at a finite number of points, the left-hand derivatives dl

db
α1 (b) , ...,

dl
db
αn (b)

exist and are finite, for all b in (γ, γ0], and the right-hand derivatives dr
db
α1 (b) , ...,

dr
db
αn (b)

exist and are finite, for all b in (γ, γ0). A solution (α1, ...., αn) of the system
(1) over (γ, γ0] is such a continuous and piecewise differentiable n-tuple such
that (b, α1 (b) , ..., αn (b)) belongs toD0, for all b in (γ, γ0], (lnF1α1, ..., lnFnαn)
is differentiable25 over (γ, γ0], and the equations (1) hold true over this inter-
val.
25The derivative at γ0 is a left-hand derivative.
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Note that if (α1, ..., αn) is a solution of (1) over (γ, γ0], since Fi is differ-
entiable over (ci, di) with a strictly positive derivative over this interval, αi

is differentiable at b, for all b such that αi (b) ∈ (ci, di) and all 1 ≤ i ≤ n.

Appendix 5.1

Lemma A5.1-1: Let Assumptions A.1 and A.2 be satisfied. Let
(α1, ..., αn) be a solution over (η − ε, η], with ε > 0, of the system (1). Then,
the following equations hold true:

d

db

X
k 6=i
lnFk (αk (b)) =

1

αi (b)− b
(A5.1-1)

d

db
lnFj (αj (b))− d

db
lnFi (αi (b)) =

1

αi (b)− b
− 1

αj (b)− b
(A5.1-2),

for all 1 ≤ i, j ≤ n and b ∈ (η − ε, η].

Proof : By summing all equations in (1) except the ith equation, we
find (A5.1-1). It suffices to subtract the ith equation in (1) from the jth
equation in order to prove (A5.1-2). ||
LemmaA5.1-2: Let Assumptions A.1 and A.2 be satisfied. Let (α1, ..., αn)

be a solution over (ζ − ε, ζ], with ε > 0, of the system (1’) and the initial
condition (A5.1-3) below

αi (ζ) = fi, 1 ≤ i ≤ n, (A5.1-3)

where di < fi and ζ < fi, for all i > k, and ζ < fi ≤ di, for all 1 ≤ i ≤ k.
Assume that k ≥ 2 and that αi (b) > di, for all i > k and all b in (ζ − ε, ζ].
Then, (α1, ..., αn) is a solution of (1) over (ζ − ε, ζ] if an only if:

d

db
lnFi (αi (b)) =

1

k − 1

(
− k − 2
αi (b)− b

+
X
k 6=i

1

αj (b)− b

)
, for all 1 ≤ i ≤ k,(A5.1-4)

and ak+1 (b) = ... = αn (b) and αi (b) is the unique solution of the equation
(A5.1-5) below, for all b in (ζ − ε, ζ] and k + 1 ≤ i ≤ n:

1

αi (b)− b
=

1

k − 1
X
1≤j≤k

1

αj (b)− b
(A5.1-5).
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:

Proof : Assume (α1, ..., αn) is a solution of (1). Since d
db
lnFi (αi (b)) = 0,

for all k+1 ≤ i ≤ n and b in (ζ 0, ζ], (αk+1, ..., αn) is a solution of the following
system:

A

µ
1

αi (b)− b

¶
k+1≤i≤n

= En−k.k

µ
1

αj (b)− b

¶
1≤j≤k

,(A5.1-6)

where A = ((n− k) In−k −Kn−k), with In−k, Kn−k, and En−k,k as defined in
Definition A3.2-1. Thus, we have:µ

1

αi (b)− b

¶
k+1≤i≤n

= A−1En−k.k

µ
1

αj (b)− b

¶
1≤j≤k

.(A5.1-7)

(A5.1-5) then follows from (A5.1-7) and the equalitiesA−1 = 1
(k−1)(n−1) (kIn−k +Kn−k)

(from Lemma A3.2-4) and 1
(k−1)(n−1) (kIn−k +Kn−k)En−k,k = 1

k−1En−k,k.
From the system (1), we have:µ
d

db
lnFi (αi (b))

¶
1≤i≤k

=
1

n− 1

(
Ek,n−k

µ
1

αi (b)− b

¶
k+1≤i≤n

+B

µ
1

αj (b)− b

¶
1≤j≤k

)
,(A5.1-8)

where B = (− (n− 2) Ik +Kk), with Ek,n−k, Ik, and Kk as defined in Defin-
ition A3.2-1.
Substituting to

³
1

αi(b)−b
´
k+1≤i≤n

in (A5.1-8) its value from (A5.1-7), we

findµ
d

db
lnFi (αi (b))

¶
1≤i≤k

=
1

n− 1Ek,n−kA−1En−k,k+B
µ

1

αj (b)− b

¶
1≤j≤k

.(A5.1-9)

The productEk,n−kA−1En−k,k is equal to n−k
n−1Ek and the sumEk,n−kA−1En−k,k+

B is equal to n−1
k−1 (− (k − 2) Ik +Kk). Substituting this value to the matrix

between braces in (A5.1-9) immediately gives (A5.1-4).
The proof that (A5.1-4) and (A5.1-5) imply (1) can proceed as in the

proof of Lemma A3.2-5. ||
Lemma A5.1-3: Let Assumptions A.1 and A.2 be satisfied. Let

(α1, ..., αn) be a solution over (ζ − ε, ζ], with ε > 0, of the system (1) and the
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initial condition (A5.1-3) in Lemma A5.1-2 above where di < fi and ζ < fi,
for all i > k, and ζ < fi ≤ di, for all 1 ≤ i ≤ k. Assume that k ≥ 2 and
that αi (b) > di, for all i > k and all b in (ζ − ε, ζ], and that d

db
αj (ζ) ≥ 0,

for all 1 ≤ j ≤ k. Then, d
db
αi (b) exists and

d

db
αi (b) > 0, (A5.1-10)

for all 1 ≤ i ≤ n and all b in (ζ − ε, ζ),

αk+1 (b) = ... = αn (b) < αj (b) , (A5.1-11)

for all 1 ≤ j ≤ k and b in (ζ − ε, ζ). Moreover,

f1 = ... = fk ≤ fj,(A5.1-12)

and if d
db
αj (ζ) > 0, then

f1 = ... = fk < fj, (A5.1-13)

for all 1 ≤ j ≤ k and k + 1 ≤ i ≤ n.

Proof : From (A5.1-3) and (A5.1-4) in the previous lemma and from
Lemma A1-1, d

db
αi (b) exists and d

db
αi (b) > 0, for all 1 ≤ i ≤ k and all b in

(ζ − ε, ζ). The function αi is thus strictly increasing over (ζ − ε, ζ], for all
1 ≤ i ≤ k. Since αi is strictly increasing over (ζ − ε, ζ] and αi (ζ) = fi ≤ di,
we have αi (b) < di, for all 1 ≤ i ≤ k.
Since αj (b) < dj and d

db
αj (b) > 0, we have d

db
lnFj (αj (b)) > 0, for

all 1 ≤ j ≤ k and b in (ζ − ε, ζ). Moreover, d
db
lnFi (αi (b)) = 0, for all

k + 1 ≤ i ≤ n and b in (ζ − ε, ζ]. The equality (A5.1-2) in Lemma A5.1-1
thus implies

αi (b) < αj (b) ,(A5.1-14)

for all 1 ≤ j ≤ k, k + 1 ≤ i ≤ n, and b in (ζ − ε, ζ). (A5.1-11) follows from
the previous inequality and from (A5.1-5) in the previous lemma. Making
b in (A5.1-11) tend towards ζ and using (A5.1-3), we find (A5.1-12). If
d
db
αj (ζ) > 0, αj (ζ) = fj < dj implies dl

db
lnFj (αj (ζ)) > 0, for all 1 ≤ j ≤ k.

From d
db
lnFi (αi (ζ)) = 0 and (A5.1-2) in Lemma A5.1-1, (A5.1-14) holds

true at b = ζ, for all k + 1 ≤ i ≤ n. Substituting ζ to b in (A5.1-14) and
using (A5.1-3), we find (A5.1-13).
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From (A5.1-5) in the previous lemma, d
db
αi (b) exists, for all b in (ζ − ε, ζ)

and all i ≥ k + 1. From (A5.1-5), we also have 1 = 1
k−1

P
1≤j≤k

αi(b)−b
αj(b)−b , for

all k + 1 ≤ i ≤ n and all b in (ζ − ε, ζ). Taking the derivative with respect
to b, we find:

0 =
X
1≤j≤k

1

(αj (b)− b)2

∙µ
d

db
αi (b)− 1

¶
(αj (b)− b)− (αi (b)− b)

µ
d

db
αj (b)− 1

¶¸
.(A5.1-15)

Suppose d
db
αi (b) ≤ 0. The expression between brackets in the R.H.S. of

(A5.1-15) would not be larger than (αi (b)− αj (b)) − (αi (b)− b) d
db
αj (b).

Since αi (b) ≤ αj (b), αi (b) > b, and d
db
αj (b) > 0, every term in the sum in

(A5.1-15) would be strictly negative and the equality (A5.1-15) could not hold
true. Consequently, d

db
αi (b) > 0, for all b in (ζ − ε, ζ) and all k+1 ≤ i ≤ n,

and (A5.1-10) is proved. ||

Lemma A5.1-4: Let Assumptions A.1 and A.2 be satisfied. Let
α1, ..., αn be continuous and piecewise differentiable functions over (γ, η], with
γ < η, such that (α1, ..., αn) is a solution over this interval of the system (1)
and the initial condition (A5.1-16) below

αi (η) = fi, (A5.1-16)

where di < fi and η < fi, for all i > k, and η < di = fi and d (η) ≤ di = fi,
for all 1 ≤ i ≤ k. Assume that k ≥ 2 and that fi < dj, for all 1 ≤ j ≤ k
and k + 1 ≤ i ≤ n. Then, αi is strictly increasing and d

db
αi (b) exists and

d

db
αi (b) > 0,

for all 1 ≤ i ≤ n and all b in (γ, η) such that αi (b) 6= di.

Proof : We can easily show that d (η) ≤ di, for all 1 ≤ i ≤ k, implies
d
db
αi (η) ≥ 0, for all 1 ≤ i ≤ k (see the proof of Lemma A3.2-3) Lemma

A5.1-4 then follows from repeated applications of Lemma A5.1-3. ||

Appendix 5.2
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Lemma A5.2-1: Let Assumptions A.1 and A.2 be satisfied. Let
α1, ..., αn be continuous and piecewise differentiable functions over (γ, η], with
γ < η, such that (α1, ..., αn) is a solution over this interval of (1) and (3’) for
a value η < d2 of the parameter. Let α∗1, ..., α

∗
n be continuous and piecewise

differentiable functions over (γ, η0], with γ < η0, such that (α∗1, ..., α
∗
n) is a

solution over this interval of (1) and (3’) for a value η0 < η of the parameter.
Then, α∗i (η

0) > αi (η
0), for all 1 ≤ i ≤ n.

Proof : Let L be the set of index values i defined as follows:

L =

½
i such that 1 ≤ i ≤ n and

d

db
lnFi (αi (η

0)) = 0
¾
.

Let k be the minimum of L. From our assumption that di does not increase
with i, from (3’), and from Lemma A5.1-4, we have L = {k, ..., n}. For
all 1 ≤ i ≤ k (η), since αi (η) = di we have d

db
lnFi (αi (η

0)) > 0 and thus
i /∈ L. Consequently, k > k (η). In particular, k > 2. For all i < k, since
d
db
lnFi (αi (η

0)) > 0 we have αi (η
0) < αi (η) = di = α∗i (η

0). For all i ≥ k,
from d

db
lnFi (αi (η

0)) = 0 and (1), we have − n−2
αi(η0)−η0 +

P
j 6=i

1
αj(η0)−b = 0.

Consequently, (αk (η
0) , ..., αn (η

0)) is a solution of the system below:

((n− 2) In−k+1 −Kn−k+1)
µ

1

αi (η0)− η0

¶
k≤i≤n

= En−k+1,k−1

µ
1

αj (η0)− η0

¶
1≤j≤k−1

,(A5.2-1)

where In−k+1, Kn−k+1, and En−k+1,k−1 are as in Definition A3.2-1. From
Lemma A3.2-4, the matrix A = ((n− 2) In−k+1 −Kn−k+1) is regular and its
inverse is equal to A−1 = 1

(k−2)(n−1) ((k − 1) In−k+1 +Kn−k+1). From (A5.2-
1), we have:µ

1

αi (η0)− η0

¶
k≤i≤n

= A−1En−k+1,k−1

µ
1

αj (η0)− η0

¶
1≤j≤k−1

.(A5.2-2)

From dl
db
lnFi (α

∗
i (η

0)) ≥ 0 and (1), we have:

A

µ
1

α∗i (η0)− η0

¶
k≤i≤n

≤ En−k+1,k−1

µ
1

α∗j (η0)− η0

¶
1≤j≤k−1

.

Since all the elements in the inverseA−1 = 1
(k−2)(n−1) ((k − 1) In−k+1 +Kn−k+1)

are nonnegative, we have:µ
1

α∗i (η0)− η0

¶
k≤i≤n

≤ A−1En−k+1.k−1

µ
1

α∗j (η0)− η0

¶
1≤j≤k−1

.(A5.2-3)
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All the elements inA−1 = 1
(k−2)(n−1) ((k − 1) In−k+1 +Kn−k+1) andEn−k+1,n=k,

and thus in their product are strictly positive. Moreover, we have already
proved that α∗j (η

0) > αj (η
0), for all j ≤ k − 1. (A5.2-2) and (A5.2-3) thus

imply 1
α∗i (η0)−η0 <

1
αi(η0)−η0 or, equivalently, α

∗
i (η

0) > αi (η
0), for all i ≥ k, and

the lemma is proved. ||
Lemma A5.2-2: Let Assumptions A.1 and A.2 be satisfied. Let

α1, ..., αn be continuous and piecewise differentiable functions over (γ, η], with
γ < η, such that (α1, ..., αn) is a solution over this interval of (1) and (3’) for
a value η < d2 of the parameter. Let α∗1, ..., α

∗
n be continuous and piecewise

differentiable functions over (γ, η0], with γ < η0, such that (α∗1, ..., α
∗
n) is a

solution over this interval of (1) and (3’) for a value η0 < η of the parameter.
Then, α∗i (b) > αi (b), for all 1 ≤ i ≤ n and all b in (γ, η0].

Proof : From the previous lemma, we have α∗i (η
0) > αi (η

0), for all
1 ≤ i ≤ n. We define h in (γ, η0] as follows:

h = inf {b ∈ [γ, η0] |α∗i (b0) > αi (b
0) , for all 1 ≤ i ≤ n and all b0 in (b, η0]} .

We want to prove that h = γ. By continuity and α∗i (η
0) > αi (η

0), for all
1 ≤ i ≤ n, we have h < η0. Suppose that h > γ. There must exist i such
that α∗i (h) = αi (h). By continuity, we also have α∗j (h) ≥ αj (h), for all
1 ≤ j ≤ n. Moreover, there exists l 6= i such that α∗l (h) > αl (h). In fact,
if it was not the case the continuous and piecewise differentiable solutions
(α1, ..., αn) and (α∗1, ..., α

∗
n) would be equal at h and would thus be equal

everywhere over their common definition domain, which is impossible since
α∗i (η

0) > αi (η
0), for all 1 ≤ i ≤ n.

Assume that d
db
lnFi (αi (h)) = 0. From (1), we have

1

αi (h)− h
=

1

n− 2
X
j 6=i

1

αj (h)− h
.(A5.2-4)

From d
db
lnFi (α

∗
i (h)) ≥ 0 and (1), we have

1

α∗i (h)− h
≤ 1

n− 2
X
j 6=i

1

α∗j (h)− h
.(A5.2-5)

Since α∗j (h) ≥ αj (h), for all j 6= i, and α∗l (h) > αl (h), (A5.2-4) and (A5.2-5)
imply 1

α∗i (h)−h < 1
αi(h)−h and thus α

∗
i (h) > αi (h). This contradicts α∗i (h) =

αi (h) and d
db
lnFi (αi (h)) = 0 is impossible.
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From the previous paragraph, we must have d
db
lnFi (αi (h)) > 0 and,

consequently, αi (h) < di. Since α∗i (h) = αi (h), we obviously have α∗i (h) <
di and d

db
lnFi (α

∗
i (h)) > 0.

From (1), we have:

d

db
αi (h) =

fi (αi (h))

Fi (αi (h))

1

n− 1

(
− n− 2
αi (h)− h

+
X
k 6=i

1

αj (h)− h

)
> 0 (A5.2-6)

d

db
α∗i (h) =

fi (α
∗
i (h))

Fi (α∗i (h))
1

n− 1

(
− n− 2
α∗i (h)− h

+
X
k 6=i

1

α∗j (h)− h

)
> 0 (A5.2-7).

From αi (h) = α∗i (h), αj (h) ≤ α∗j (h), for all j, and αl (h) < α∗l (h), the
inequalities (A5.2-6) and (A5.2-7) imply

d

db
α∗i (h) <

d

db
αi (h) .

There thus exists δ > 0 such that αi (b) > α∗i (b), for all b in (h, h+ δ).
However, this contradicts the definition of h. We have thus proved that
h > γ is impossible and thus that h = γ. The lemma is proved. ||

Appendix 6

Existing Results III (Lebrun 1999a): Let Assumptions A.1 be satisfied.
Assume also ci = c, di = d, for all i, and r ≤ c. If F1 = ... = Fm = G1

and Fm+1 = ... = Fn = G2, where 1 ≤ m ≤ n, G1 (c) = G2 (c) = 0,
and d

dv
G1
G2
(v) > 0, for all v in (c, d], then there exists one and only one

equilibrium.

The assumption d
dv

G1
G2
(v) > 0, over (c, d], is the assumption of (strict)

reverse hazard rate stochastic dominance by G1 over G2 (see Krishna 2002).
Conditionally on any interval [c, e], with c ≤ e ≤ d, the distribution G1

first order dominates the distribution G2. A close examination of the proof
in Lebrun (1999a) reveals that this relation of stochastic dominance is only
needed in a nondegenerate interval with c as its lower extremity. We have
the following extension.
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Extension of Results III: Let Assumptions A.1 be satisfied. Assume
also ci = c, di = d, for all i, r ≤ c, F1 = ... = Fm = G1, Fm+1 = ... = Fn =
G2, with 1 ≤ m ≤ n, and G1 (c) = G2 (c) = 0. If there exists ε > 0 such
that d

dv
G1
G2
(v) > 0, for all v in (c, c+ ε], then there exists one and only one

equilibrium.

In the proof of this extension above, we will use Lemma A6-1 below.
LemmaA6-1: Let Assumptions A.1 be satisfied. Assume ci = c, di = d,

for all i, and r ≤ c. Let F1,...,Fn be differentiable over (c, d] with derivatives
f1, ..., fn locally bounded away from zero over this interval. Assume that
there exists δ > 0, m, G1, and G2 such that G1 (c) = G2 (c) = 0, Fi = G1,
for all 1 ≤ i ≤ m, Fj = G2, for all m < j ≤ n, and d

dv
G1
G2
(v) > 0, for all v in

(c, c+ δ]. Let (β1, ..., βn) and
³eβ1, ..., eβn´ be two different equilibria of the

first-price auction. Then there exist β∗1, β
∗
2,
eβ∗1, and eβ∗2 such that βi = β∗1 andeβi = eβ∗1, for all 1 ≤ i ≤ m, βj = β∗2 and eβj = eβ∗2, for all m < j ≤ n. There

also exists γ > 0 such that either ϕ∗21 (v) < eϕ∗21 (v), for all v in (c, c+ γ),
or ϕ∗21 (v) > eϕ∗21 (v), for all v in (c, c+ γ), where ϕ∗21 = β∗−12 ◦ β∗1 andeϕ∗21 = eβ∗−12 ◦ eβ∗1.
Proof : The first part of Lemma A6-1 is from Corollary 3 (iv) in Lebrun

(1999a). From the property of monotonicity with respect to η (see Lemma
2, Section 3, and its proof in Appendix 1), we know that, over (c, d], eithereβ∗1 > β∗1 and eβ∗2 > β∗2 or eβ∗1 < β∗1 and eβ∗2 < β∗2. Without loss of generality,
we can assume that eβ∗1 > β∗1 and eβ∗2 > β∗2.
Substituting in (1) α∗1 to αi and G1 to Fi, for all 1 ≤ i ≤ m, and α∗2 to αj

and G2 to Fj, for all m+1 ≤ j ≤ n, and rearranging, the system (1) reduces
to the two following equations:

d

db
α∗1 (b) =

G1 (α
∗
1 (b))

g1 (α∗1 (b))
1

n− 1
(n−m)α∗1 (b)− (n−m− 1)α∗2 (b)− b

(α∗1 (b)− b) (α∗2 (b)− b)
(A6-1)

d

db
α∗2 (b) =

G2 (α
∗
2 (b))

g2 (α∗2 (b))
1

n− 1
mα∗2 (b)− (m− 1)α∗1 (b)− b

(α∗1 (b)− b) (α∗2 (b)− b)
(A6-2).

Since the bid functions are differentiable over (c, d] or since the derivatives
of the inverse bid functions are strictly positive over (c, η] (see Lemma A1-2),
the functions ϕ∗21 and β

∗
1 are differentiable at v,

d
dv
ϕ∗21 (v) =

£
d
db
α∗2 (b)

¤
b=α∗−11 (v)

1

[ ddbα∗1(b)]b=α∗−11 (v)

,
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and d
dv
β∗1 (v) =

1

[ ddbα∗1(b)]b=α∗−11 (v)

, for all v in (c, d]. Dividing (A6-2) by (A6-1)

and simplifying, we find that (ϕ∗21, β
∗
1) is a solution over (c, d] of the system

(A6-3) and (A6-4) below —considered on the domain:

{(v, ϕ21, β1) |c < v, ϕ21 ≤ d, (n−m) v − (n−m− 1)ϕ21 − β1 > 0} .
d

dv
ϕ∗21 (v) =

g1 (v)

G1 (v)

G2 (ϕ
∗
21 (v))

g2 (ϕ∗21 (v))
mϕ∗21 (v)− (m− 1) v − β∗1 (v)

(n−m) v − (n−m− 1)ϕ∗21 (v)− β∗1 (v)
(A6-3)

d

dv
β∗1 (v) =

g1 (v)

G1 (v)

(n− 1) (v − β∗1 (v)) (ϕ
∗
21 (v)− β∗1 (v))

(n−m) v − (n−m− 1)ϕ∗21 (v)− β∗1 (v)
(A6-4).

From our assumption of stochastic dominance between G1 and G2 over
(c, c+ γ), we have d

dv
ϕ∗21 (v) < 1, for all solution (ϕ

∗
21, β

∗
1) of (A6-3) and (A6-

4) and all v in (c, c+ γ) such that ϕ∗21 (v) = v. From (A6-3) and (A6-4),
this property implies, through a standard proof (see, for example, Lemma
2 in Milgrom and Weber 1982, Lemma A7 in Lebrun 1998, or the proof of
Lemma A1-1 in Appendix 1 of the present paper), that there exists δ > 0
such that either ϕ∗21 (v) > v, for all v in (c, c+ δ), or ϕ∗21 (v) < v, for all v in
(c, c+ δ). Similarly, there exists eδ > 0 such that either eϕ∗21 (v) > v, for all
v in (c, c+ δ), or eϕ∗21 (v) < v, for all v in (c, c+ δ). We can assume that27

δ = eδ.
If ϕ∗21 (v) > v and eϕ∗21 (v) < v, for all v in (c, c+ δ), or if ϕ∗21 (v) < v

and eϕ∗21 (v) > v, for all v in (c, c+ δ), Lemma A6-1 is proved. Assume that
ϕ∗21 (v) < v and eϕ∗21 (v) < v, for all v in (c, c+ δ). Since (A6-3) can be

rewritten as d
dv
ϕ∗21 (v) =

g1(v)
G1(v)

G2(ϕ∗21(v))
g2(ϕ∗21(v))

n
1 +

(n−m)(ϕ∗21(v)−v)
(n−m)v−(n−m−1)ϕ∗21(v)−β∗1(v)

o
and

since eβ∗1 > β∗1, over (c, d], we see that if ϕ
∗
21 (v) = eϕ∗21 (v) then d

dv
ϕ∗21 (v) >

d
dv
eϕ∗21 (v), for all v in (c, c+ δ). Again through a standard proof, this implies

the existence of 0 < µ < δ such that either ϕ∗21 (v) > eϕ∗21 (v), for all v in
(c, c+ µ), or ϕ∗21 (v) < eϕ∗21 (v), for all v in (c, c+ µ), and Lemma A6-1 is
proved in this case. The proof in the case ϕ∗21 (v) > v and eϕ∗21 (v) > v, for
all v in (c, c+ δ), is similar. ||

Proof of Extension of Results III: Suppose that there are two differ-
ent equilibria (β1, ..., βn) and

³eβ1, ..., eβn´. Let (β∗1, β∗2), ³eβ∗1, eβ∗2´, and γ > 0

be as in Lemma A6-1. As in the proof of Lemma A6-1, we can assume,
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without loss of generality, that eβ∗1 > β∗1 and eβ∗2 > β∗2, over (c, d]. Define w
as follows:

w = min {v ∈ (c, d] |ϕ∗21 (v) = eϕ∗21 (v)} .
Since ϕ∗21 (d) = eϕ∗21 (d), the set in the definition of w is not empty. Moreover,
from Lemma A6-1, we have either ϕ∗21 (v) < eϕ∗21 (v), for all v in (c, c+ γ), or
ϕ∗21 (v) > eϕ∗21 (v), for all v in (c, c+ γ). Consequently, w exists and w ≥ c+γ.
Assume that ϕ∗21 (v) < eϕ∗21 (v), for all v in (c, c+ γ). Then, ϕ∗21 (v) < eϕ∗21 (v),
for all v in (c, w). It is a standard result from the theory of incentive
compatible mechanisms that the rate of increase of the interim expected
payoff is equal to the probability of winning. We thus have β∗1 (w) = w −R w
c
G1 (v)

mG2 (ϕ
∗
21 (v))

(n−m−1) dv/G1 (w)
mG2 (ϕ

∗
21 (w))

(n−m−1) and eβ∗1 (w) =
w − R w

c
G1 (v)

mG2 (eϕ∗21 (v))(n−m−1) dv/G1 (w)
mG2 (eϕ∗21 (w))(n−m−1) . From

the inequality between ϕ∗21 and eϕ∗21 over (c, w) and the equality between them
at w, it then follows that β∗1 (w) > eβ∗1 (w). It contradicts eβ∗1 > β∗1 over (c, d]
and Extension of Results III is proved in the case ϕ∗21 (v) < eϕ∗21 (v), for all v
in (c, c+ δ).
Assume now that ϕ∗21 (v) > eϕ∗21 (v), for all v in (c, c+ δ) and thus for all v

in (c, w). By inverting the (strictly increasing) functions ϕ∗21 and eϕ∗21, we find
ϕ∗12 (v) < eϕ∗12 (v), for all v in (c, w), where ϕ∗12 = β∗−11 ◦β∗2 and eϕ∗12 = eβ∗−11 ◦eβ∗2.
By applying to the functions β∗2 and eβ∗2 the same arguments we used in the
previous paragraph, we also find a contradiction and Extension of Results
III is proved. ||
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