Supplementary Material to "Optimality and the English and Second-Price Auctions with Resale"

by
Bernard Lebrun
Department of Economics, York University; blebrun@econ.yorku.ca

Zheng (2002) proves that the following condition has to hold true when one-shot deviations are not profitable:

$$
\int_{v_{i}^{\prime}}^{v_{i}}\left\{q_{i}\left(w_{i}, w_{i}\right)-q_{i}\left(v_{i}^{\prime}, w_{i}\right)\right\} d w_{i} \geq 0,
$$

for all v_{i}, v_{i}^{\prime}; where $q_{i}\left(w_{i}^{\prime}, w_{i}\right)$ denotes the probability that bidder i would eventually receive the item if he acted at the first stage as if his value was w_{i}^{\prime} and then at the subsequent stages as if it was w_{i}.

Since no deviation from our PBE is profitable, we know that (1) holds true. Nevertheless, we now prove it directly in the case of Section 3, where a uniform bias exists.

We actually prove the stronger "single-crossing" property below:

$$
\begin{equation*}
q_{i}\left(w_{i}^{\prime}, w_{i}\right) \geq q_{i}\left(w_{i}, w_{i}\right) \tag{2}
\end{equation*}
$$

for all $w_{i}^{\prime} \geq w_{i}$, and

$$
\begin{equation*}
q_{i}\left(w_{i}^{\prime}, w_{i}\right) \leq q_{i}\left(w_{i}, w_{i}\right), \tag{3}
\end{equation*}
$$

for all $w_{i}^{\prime} \leq w_{i}$.
Since $q_{2}\left(d_{2}, d_{2}\right)=1,(2,3)$ always hold true for $i=2$ and $w_{2}=d_{2}$. Take w_{2} in $\left(c_{2}^{\prime}, d_{2}\right)$. Then:
$q_{2}\left(w_{2}^{\prime}, w_{2}\right)=F_{1}\left(\omega_{1}^{-1} \omega_{2}\left(w_{2}\right)\right) G_{2}\left(w_{2} \mid w_{2}^{\prime}\right)+\int_{w_{2}}^{w_{2}^{\prime}} F_{1}\left(\omega_{1}^{-1} \omega_{2}(b)\right) d G_{2}\left(b \mid w_{2}^{\prime}\right)$,
if $w_{2}^{\prime} \geq w_{2}$, and

$$
q_{2}\left(w_{2}^{\prime}, w_{2}\right)=F_{1}\left(\omega_{1}^{-1} \omega_{2}\left(w_{2}\right)\right),(5)
$$

if $w_{2}^{\prime} \leq w_{2}$.
For example, assume bidder 2 with value w_{2} bids at auction as if his value was $w_{2}^{\prime}>w_{2}$. With probability $G_{2}\left(w_{2} \mid w_{2}^{\prime}\right)$, he bids in $\left[r, w_{2}\right]$. Whatever his bid b in this range is, he will eventually own the item if and only if bidder 1's value is smaller than $\omega_{1}^{-1} \omega_{2}\left(w_{2}\right)$. If bidder 1 with such a value wins the auction, there is no profitable resale. If such a bidder 1 wins the auction, he then demands b as a resale price, which bidder 2 accepts. If bidder 1's value v_{1} is above $\omega_{1}^{-1} \omega_{2}\left(w_{2}\right)$, he wins the auction and demands the price $\omega_{2}^{-1} \omega_{1}\left(v_{1}\right)$, which bidder 2 refuses. The first term in the RHS of (4) follows.

When bidder 2 bids, according to $G_{2}\left(. \mid w_{2}^{\prime}\right)$, in $\left[w_{2}, w_{2}^{\prime}\right]$, the price he will be charged at resale will exceed his value. Consequently, he can receive the item only after winning the auction. The second term in the RHS. of (4) follows. Proving (5) is similar.
(3) with $i=2$ follows trivially from (5). Integrating (4) by parts and using $G_{2}\left(w_{2}^{\prime} \mid w_{2}^{\prime}\right)=1$ give:

$$
q_{2}\left(w_{2}^{\prime}, w_{2}\right)=F_{1}\left(\omega_{1}^{-1} \omega_{2}\left(w_{2}^{\prime}\right)\right)-\int_{w_{2}}^{w_{2}^{\prime}} G_{2}\left(b \mid w_{2}^{\prime}\right) d F_{1}\left(\omega_{1}^{-1} \omega_{2}(b)\right)
$$

Consequently, for $w_{2}^{\prime} \geq w_{2}$, the inequality (2) is equivalent to:

$$
\begin{aligned}
& F_{1}\left(\omega_{1}^{-1} \omega_{2}\left(w_{2}^{\prime}\right)\right)-F_{1}\left(\omega_{1}^{-1} \omega_{2}\left(w_{2}\right)\right) \\
\geq & \int_{w_{2}}^{w_{2}^{\prime}} G_{2}\left(b \mid w_{2}^{\prime}\right) d F_{1}\left(\omega_{1}^{-1} \omega_{2}(b)\right),
\end{aligned}
$$

which clearly holds true.
Take next w_{2} in $\left[c_{2}, c_{2}^{\prime}\right]$. Then, it is simple to check that $q_{2}\left(w_{2}^{\prime}, w_{2}\right)=0$, for all $w_{2}^{\prime} \leq c_{2}^{\prime}$. (2) and (3) then follow immediately from the inequality $q_{2}\left(w_{2}^{\prime}, w_{2}\right) \geq 0$, which trivially holds true for all w_{2}^{\prime}.

Consider next $i=1$ and w_{1} in $\left[c_{1}^{\prime}, d_{1}\right]$. Then:

$$
q_{1}\left(w_{1}^{\prime}, w_{1}\right)=F_{2}\left(\omega_{2}^{-1} \omega_{1}\left(w_{1}\right)\right),(6)
$$

for all $w_{1}^{\prime} \geq w_{1} ;$

$$
\begin{equation*}
q_{1}\left(w_{1}^{\prime}, w_{1}\right)=G_{2}(r)+\int_{r}^{\omega_{2}^{-1} \omega_{1}\left(w_{1}^{\prime}\right)} F_{2}\left(\omega_{2}^{-1} \omega_{1}\left(w_{1}\right) \mid b\right) d G_{2}(b),(7 \tag{7}
\end{equation*}
$$

for all $c_{1}^{\prime}<w_{1}^{\prime} \leq w_{1}$; and

$$
q_{1}\left(w_{1}^{\prime}, w_{1}\right)=0,
$$

for all $w_{1}^{\prime} \leq c_{1}^{\prime}$. (6) and (7) hold true because bidder 1 with value w_{1} always demands a resale price that bidder 2 accepts when his value is larger than $\omega_{2}^{-1} \omega_{1}\left(v_{1}\right)$.

The only part of the proof of the single-crossing property that is not immediate is the proof of the inequality $q_{1}\left(w_{1}^{\prime}, w_{1}\right) \leq q_{1}\left(w_{1}, w_{1}\right)$, for $c_{1}^{\prime}<$ $w_{1}^{\prime} \leq w_{1}$. It can proceed as follows:

$$
\begin{aligned}
q_{1}\left(w_{1}^{\prime}, w_{1}\right) & \leq G_{2}(r)+\int_{r}^{\omega_{2}^{-1} \omega_{1}\left(w_{1}\right)} F_{2}\left(\omega_{2}^{-1} \omega_{1}\left(w_{1}\right) \mid b\right) d G_{2}(b) \\
& =F_{2}\left(\omega_{2}^{-1} \omega_{1}\left(w_{1}\right)\right) \\
& =q_{1}\left(w_{1}, w_{1}\right)
\end{aligned}
$$

The inequality above and the second equality follow from (7); and the first equality from the fact that bidder 2 does not bid higher than his value.

Finally, the single-crossing property for $w_{1} \leq c_{1}^{\prime}$ follows from $q_{1}\left(w_{1}^{\prime}, w_{1}\right)=$ 0 , for all $w_{1}^{\prime} \leq c_{1}^{\prime}$.

