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Proof of the necessity of the characterization in Theorem 1 (i):

1. A bidder’s weakly undominated strategy must not recommend bidding

strictly above his value and (i.1) follows.

2. From 1., any bidder with value    has a strictly positive expected

payoff and hence  is the minimum of the support of either bid’s distribution.

Myerson (1981) implies the continuity and monotonicity with respect to his

value of any bidder’s interim expected payoff.

3. If    is in a bidder’s bid support, it must be a point of increase to

the left of both bidders’ bid cumulative functions. Otherwise, there would

exist a gap (−  ] where no bidder bids and any bidder who is supposed

to bid close to  would increase his payoff strictly if he bid − instead. As

a consequence, the supports of the bid distributions are equal to the same

interval [  ()].

4. There does not exist a bid  ≥  that is a mass point of both bidders’

bid distributions. Because the value distributions are atomless, if there

existed such a bid, a bidder would submit  with a strictly positive probability

for some values strictly smaller than . This bidder would increase strictly

his payoff if he bid slightly above  instead.

5. The bid distributions are atomless strictly above . In fact, from 4.

above, there could only exist an atom    of the bid distribution of a single

bidder, say bidder . From 3., bidder  6=  bids at or below and arbitrarily

close to . For a deviation slightly above  by bidder  not to be strictly

profitable, his value must approach  when his bid approaches . From the
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continuity in 2., his payoff when his value is  must therefore be:

(1− )

Z 



(− )  (; ) ,

where  (; ) is bidder ’s bid cumulative distribution function. While if

bidder  submits bids close to and above bid  − , with   0, his payoff

would tend towards:

 (− ; ) + (1− )

Z −



(− )  (; )

= (1− )

Z 



(− )  (; )

+

½
 (− ; )− (1− )

Z
(−)

(− )  (; )

¾
≥ (1− )

Z 



(− )  (; )

+
©
 (− ; )− (1− )

¡


¡
−; 

¢− (− ; )
¢ª

 (1− )

Z 



(− )  (; ) ,

where the last inequality holds for all   0 sufficiently small. Bidder 

would then have a strictly profitable deviation, which is impossible at an

equilibrium.

This also proves that the bid cumulative functions 1 (; )  2 (; ) and

hence the bidder’s expected payoffs are continuous in   .

6. Because a bidder’s expected payoff when he bids strictly above 

has strictly increasing differences in his bid and value, equilibrium bidding

strategies must be nondecreasing and consequently, from 5., strictly increas-

ing (when taking values strictly above ) and, from 3., continuous. Thus,

for all  and   ,  (; ) =  ( (; )).

7. Any bidder’s probability of winning is differentiable with respect to

his own bid strictly above . The main idea of the proof is to express that
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an optimal  is better for bidder  with value  than a bid 0 as the inequality

below;

 (; )− (
0; )

− 0
≥  (

0; )
 − 

− 1− 

 − 

R 
0  (; ) 

− 0
,

if 0 ≤  and the reverse inequality if 0 ≥ . Making − 0 tend towards zero

in such inequalities and appealing to the continuity of  above  (from 5.)

gives the result.

8. From 7., the inverse bidding functions are differentiable strictly above

 and satisfy the system of differential equations (1). Moreover, from 3., we

must have 1 ( () ; ) = 2 ( () ; ) =  and  (; ) = , for at least one

. That actually  (; ) =  for both  = 1 2 is a property of the differential

system and follows from Corollary 6 in Lebrun (1999).

Proof of Lemma A2:

Proof of (i): For all  in ( ] and all   0, we obviously have:



Z 



µ
 ()

 ()

¶



=

Z 



 ()

 ()


µ
 ()

 ()

¶

,

and consequently
()
()

is integrable for
³
()
()

´
over [ ]. The equality in

(i) then follows from the weak convergence of
³
()
()

´
towards the degenerate

distribution  concentrated at  when  tends towards +∞.
Proof of (ii): The first statement is an immediate consequence of (i).

Let  be an arbitrary strictly positive number. From the convergence at ,

there exists 0 such that
¯̄̄

R 

 ()  − ()

()

¯̄̄
 , for all   0. Let  be

the maximum over the interval [ ] of

¯̄̄̄



³
()
()

´2 ¯̄̄̄
2. We have   +∞.

Indeed, as ()  () = 1 

ln () is nondecreasing in an interval [ + ]
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and tends towards 0 when  tends towards , we have 


³
()
()

´2
≥ 0 in this

interval. Furthermore, we have:¯̄̄̄
¯ 

µ
 ()

 ()

¶2 ¯̄̄̄¯
= 2

µ
 ()

 ()

¶2 ¯̄̄̄
1−  ln  ()

 ln ()

¯̄̄̄
≤ 2 (1 +)

µ
 ()

 ()

¶2
,

with  is a bound of
¯̄̄
 () =

 ln ()
 ln()

¯̄̄
1.

Consider then any  such that   max (0). Then,

max
∈[]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯  .

From the definition of 0, the inequality holds true if the maximum is reached

at . The inequality is obviously satisfied if the maximum on the LHS is

zero. We may thus that it is strictly positive and, hence, that it is not

reached at  = .

Assume then that the maximum is different from zero and reached at ∗

in the interior of the interval. In this case, the FOC is:

 − 

R ∗


 () 

 (∗)
 (∗) 
 (∗)

− 



 (∗)
 (∗)

= 0,

or, equivalently:



R ∗


 () 

 (∗)
=

 (∗)
 (∗)

µ
1− 1







 (∗)
 (∗)

¶
.

1Log-concavity at  and the existence of a lower bound on  imply that  is bounded.
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Consequently:

max
∈[]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯

=

¯̄̄̄
¯
Z ∗



µ
 ()

 ()

¶

 −  (∗)
 (∗)

¯̄̄̄
¯

=

¯̄̄̄
1



 (∗)
 (∗)





 (∗)
 (∗)

¯̄̄̄
≤ 


 .

||

Proof of Lemma A3:

(i) follows from  ()→ +∞ if → .

Extend 1 2 (for example, linearly) as continuously differentiable and

strictly positive functions over ( + 2), with   0. Finally, use the

same formula in the definition to extend  (; ) to ( + 2) × (−2 0 2 0),
where  0  0. As the partial derivatives will be continuous over ( + 2)×
(−2 0 2 0), the extension will be continuously differentiable over this prod-
uct.

From the definition, 0 (; ) is equal to 1−  ()
−2 


 (). From our

assumptions (in particular of local log-concavity at ), 

 () is bounded

from above and consequently there exists 0     0 such that 0 (; ) is

strictly above −
+− , which belongs to (0 1), over ( + )× (− ).

From the definition also, 

 (; ) is equal to  ()

−1
, which is bounded

from above.

As  (; ) =  and 0 (; ) is strictly above
−

+− over ( + ) ×
(− ),  (; ) is a strictly increasing function over ( + ) such that

 (+ ; )  , for all  in (− ). (ii) is proved.
We then have 

¡
−1 (; ) ; 

¢
= , for all ( ) in ( ]× (− ). For
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all such ( ), the implicit function theorem implies that 

−1 (; ) exists

and is equal to − 


¡
−1 (; ) ; 

¢
0
¡
−1 (; ) ; 

¢
. (iii) follows. ||

Proof of Lemma A5:

Proof of (i): Follows directly from the definition of  ().

Proof of (ii): From Lemma A3 (ii), for all  = 1 2, 0 (; ) tends

towards one uniformly for  in any compact subinterval of ( ]. As, from

LemmaA3 (ii),  (; ) tends towards  for all ,
¡
−1
¢0
(; ) = 10

¡
−1 (; ) ; 

¢
tends towards one and −1 (; ) tends towards  uniformly in  ∈ [  (; )],
for all   2. As 2 ([  ()] ; ) ⊆ [ 1 (; )], −11 (2 (; ) ; ) tends to-

wards  and its derivative tends towards one uniformly over any interval

[  ()]. (ii) then follows from the definition of Ψ (; ).

Proof of (iii): That Φ (; ) tends to Λ uniformly over any compact

subinterval of (−∞ 0) follows directly from Theorem 2 and the definitions

of Φ (; ) and Λ.

Let be an arbitrary compact subinterval of (−∞ 0). We prove first the

uniform convergence over  of the derivative Φ0 (; ) towards the derivative

 of Λ. From the compactness of , it suffices to prove:

lim
()→(0)

Φ0 (; ) = ,

for all  in . Let   0 be such that −  min.

Suppose there exists  in  such that lim()→(0)Φ0 (; ) 6= . Then,

there exists   0 and a sequence (; )≥1 converging towards (; 0) such

that:

|Φ0 (; )− |  . (1)

From (i), (ii) above and because the left-hand derivativeΨ0
 (; ) is zero to the

right of ln1 ( ()), there exists 
0  0 and  such that max  −  0

2That is, for all  and for all   0, there exists 0  0 such that¯̄̄¡
−1

¢0
(; )− 1

¯̄̄
,
¯̄
−1 (; )− 

¯̄ ≤ , for all 0    0 and  in [  (; )].

6



and for all   0:

|Ψ0 (; )− |  2, (2)

for all  in [−−], and

Ψ0 (; )   + 2,

for all  in [− 0]. As the limit  of ()≥1 belongs to  and hence to the

interior of [−−], we may assume that ()≥1 is included in [−−].
We subdivide the rest of the proof in four parts.

(a) In (a) and in (b) below, we suppose that lim→+∞Φ
0 (; )  −

. Extracting the subsequence if necessary, we may assume lim→+∞Φ0 (; ) 

 − . There then exists ∗  0, which we may assume larger than 0, such

that:

Φ0 (; )   − ,

for all   ∗.

Here in (a), we consider the case where there exists a subsequence ()≥1
such that  ≥ ∗ and Φ ( ; ) ≤ Ψ ( ; ), for all  ≥ 1. Extracting

the subsequence again if necessary, we may assume that this the case of the

original sequence. For all  ≥ ∗, as, from (1) and (2), Φ0 (; )  Ψ0 (; ),

there exists   0, such that Φ (; )  Ψ (; ), for all  in (  + ).

From Lemma A4 (iv), as Φ (; ), being below Ψ (; ), is concave over

(  + ), we have Φ0 (; )   − , for all  in (  + ). As long

as it remains strictly below Ψ (; ), Φ (; ) will remain strictly concave

and its derivative will decrease and therefore will remain smaller than  − 

if  increases. As, from (2), Ψ0 (; )   − 2, Φ (; ) will never meet

again Ψ (; ) to the right of . Consequently, for all  ≥ ∗, Φ (; ) is

strictly concave over (−) and Φ0 (; )   −  over this interval. As

 tends towards   −, for all  large enough   (−) 2 and hence

Φ0 (; )  −  over ((−) 2−). The different functions are then as
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in Figure 1 below.

6

-
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶

,
,
,
,,

  − 

− −

12(2)

11(()) 0

 = 11(1)

Φ(; )

Ψ(; )

Λ

FIGURE 1: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not larger than Ψ (; ).
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For all  large enough, we then have:Z −

(−)2
Φ0 (; )   (−−) ( − ) 2.

However, Φ (; ) tends towards Λ and consequently we also have, from :

lim
→+∞

Z −

(−)2
Φ0 (; ) 

= lim
→+∞

(Φ (−; )−Φ ((−) 2; ))

= Λ (−)− Λ ((−) 2)

=  (−−) 2,

and we obtain a contradiction.

(b) We consider next the case where there exist a subsequence

()≥1 such that  ≥ ∗ and Φ ( ; )  Ψ ( ; ), for all  ≥ 1. Ex-

tracting the subsequence if necessary, we may again assume that this holds

true for the original sequence. From Lemma A4 (iv), as long as it remains

strictly above Ψ (; ), Φ (; ) will remain strictly convex and its derivative

will decrease and therefore will remain smaller than −  if  decreases. As,

from (2), Ψ0 (; )   − 2, Φ (; ) will never meet Ψ (; ) to the left of

. Consequently, for all  ≥ ∗, Φ (; ) is strictly convex over (− ) and

Φ0 (; )  −  over this interval. As  converges towards , for all  large

enough Φ (; ) is strictly convex over
¡− −

2

¢
and Φ0 (; )  −  over

this interval. The configuration of the graphs are as in Figure 2 below.
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6

-
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶

,
,
,
,,

  − 

− −

12(2)

11(()) 0

 = 11(1)

Φ(; )

Ψ(; )

Λ

FIGURE 2: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not smaller than Ψ (; ).

For all such , we then have:Z (−)2

−
Φ0 (; )   (+) ( − ) 2.
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However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. As (a) and (b) exhaust all possibilities, we

have ruled out lim→+∞Φ
0 (; )   − .

(c) Here and in (d) below, we suppose that lim→+∞Φ0 (; )  +.

As above, we may assume that lim→+∞Φ0 (; )   + . Consequently,

there exists ∗  0, which we may assume larger than 0 such that:

Φ0 (; )   + ,

for all   ∗.

We show that, for all   ∗, Φ (; )  Ψ (; ). Suppose there exists

  ∗ such that Φ (; ) ≥ Ψ (; ). As Φ
0 (; )  Ψ0 (; ), there exists

  0 such that Φ (; )  Ψ (; ), for all  in (  + ). From Lemma

A4 (iv), Φ (; ) is convex over (  + ), and we have Φ
0 (; )   + ,

for all  in (  + ). As long as it remains strictly above Ψ (; ), Φ (; )

will remain strictly convex and its derivative will increase and therefore will

remain larger than  +  if  increases. As Ψ0
 (; )   + 2, Φ (; )

will never meet again Ψ (; ) and therefore will stay strictly above it to

the right of . See Figure 4 in the paper. However, this contradicts

Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

(d) From (c), Φ (; )  Ψ (; ), for all   ∗. As long as it

remains strictly below Ψ (; ), Φ (; ) will remain strictly concave and

its derivative will increase and therefore will remain larger than  +  if 

decreases. As, from (2), Ψ0 (; )  +2, Φ (; ) will never meet Ψ (; )

11



to the left of . Consequently, for all  ≥ ∗, Φ (; ) is strictly concave over

(− ) and Φ0 (; )   +  over this interval. As  converges towards

, for all  large enough Φ (; ) is strictly concave over (− (−) 2)

and Φ0 (; )   +  over this interval. See Figure 5 in the paper for an

illustration of this case.

For all  large enough, we then have:Z (−)2

−
Φ0 (; )   (+) ( + ) 2.

However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. We have ruled out lim→+∞Φ0 (; )  + 

and completed the proof of (iii).

Proof of (iv): Suppose lim(;)→(0;0)Φ0 (; )  . There then exist   0

and a sequence (; )≥1 tending towards (0; 0) and such that Φ
0 (; ) 

+ , for all . We may assume that ()≥1 is included in a compact interval

[− 0]. As in the proof of (iii) above, from (i) and (ii) there exists ∗, such

that Ψ0
 (; )   + 2,for all   ∗ and  in [− 0].

As in part (c) of the proof of (iii) above, we can rule out Φ (; ) ≥
Ψ (; ) for some   ∗. We may then assume Φ (; )  Ψ (; ), for

all   ∗. For any   ∗, as longs as Φ (; ) does not meet Ψ (; )

it will remain strictly concave and therefore its derivative will increase and

hence will be larger than +  if  decreases within [− 0]. However, from

Ψ0 (; )   + 2, Φ (; ) will never meet Ψ (; ) to the left of  within
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[− 0]. Consequently, Φ0 (− ; )  + , for all   ∗. This contradicts

(iii) and we have proved (iv).

Proof of (v):

(a) Differentiating the definition of Ψ, it is straightforward to find

the following expression:

Ψ0 (; )

=
2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

1 +  − 1 (exp )

1 +  − 2 (expΨ (; ))
, (4)

where  () is the elasticity of the density 
¡
−1 ()

¢
with respect to the

cumulative probability . From the convergence, from (ii), ofΨ (; ) towards

Λ (), there exists   0 such that 2 =  
1 is log-concave and hence 2 ≤

1 over
£
 −12 (expΨ (; ))

¤
. From Lemma A4 (i), −12 (expΨ (; )) ≥

−11 (exp ). Consequently, for all   , we have:

2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

≤ 2
¡
−11 (exp )

¢
exp 

1
¡
−11 (exp )

¢
2

−1
1 (exp )

= ,

where the equality follows from 2 = 1. From (4) and 2 ≤ 1, we then
find, for all   :

Ψ0 (; )

≤  (1 +  − 1 (exp ))

≤  (1 +  + ) ,
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with − the lower bound of 1. The inequality lim(;)→(−∞;0)Ψ0 (; ) ≤ 

follows.

(b) We will prove lim→0 sup∈R− Φ
0 (; ) ≤ . This will obviously

imply (v). First, note Φ0 (0; ) = 1, for all . Let  be an arbitrary strictly

positive number. From (ii) and part (a) above of the current proof, there

exists 0 such that Ψ0 (; )  + 2, for all 0    0 and all  in (−∞ 0).

Suppose there exists  in (−∞ 0) and   0 such that Φ0 (; ) 

 + . Assume first Φ (; ) ≤ Ψ (; ). Then, proceeding as in the

proofs above, Φ (; ) remains concave and below Ψ (; ) and Φ0 (; ) re-

mains above  +  everywhere to the left of . Consequently, there exists 

in (− (Φ (; )− Λ ())  ) such that Φ (; ) = Λ (). This contradicts

Lemma A4 (iii).

Suppose next Φ (; )  Ψ (; ). Then, Φ (; ) remains strictly convex

and strictly above Ψ (; ) everywhere to the right of . However, this

contradicts Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

We have proved sup∈R− Φ
0 (; ) ≤ + , for all   0, and consequently

lim→0 sup∈R− Φ
0 (; ) ≤  + . As  was arbitrary, the result follows. ||
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