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Proof of the necessity of the characterization in Theorem 1 (i):

1. A bidder’s weakly undominated strategy must not recommend bidding

strictly above his value and (i.1) follows.

2. From 1., any bidder with value    has a strictly positive expected

payoff and hence  is the minimum of the support of either bid’s distribution.

Myerson (1981) implies the continuity and monotonicity with respect to his

value of any bidder’s interim expected payoff.

3. If    is in a bidder’s bid support, it must be a point of increase to

the left of both bidders’ bid cumulative functions. Otherwise, there would

exist a gap (−  ] where no bidder bids and any bidder who is supposed

to bid close to  would increase his payoff strictly if he bid − instead. As

a consequence, the supports of the bid distributions are equal to the same

interval [  ()].

4. There does not exist a bid  ≥  that is a mass point of both bidders’

bid distributions. Because the value distributions are atomless, if there

existed such a bid, a bidder would submit  with a strictly positive probability

for some values strictly smaller than . This bidder would increase strictly

his payoff if he bid slightly above  instead.

5. The bid distributions are atomless strictly above . In fact, from 4.

above, there could only exist an atom    of the bid distribution of a single

bidder, say bidder . From 3., bidder  6=  bids at or below and arbitrarily

close to . For a deviation slightly above  by bidder  not to be strictly

profitable, his value must approach  when his bid approaches . From the
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continuity in 2., his payoff when his value is  must therefore be:
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where  (; ) is bidder ’s bid cumulative distribution function. While if

bidder  submits bids close to and above bid  − , with   0, his payoff

would tend towards:
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where the last inequality holds for all   0 sufficiently small. Bidder 

would then have a strictly profitable deviation, which is impossible at an

equilibrium.

This also proves that the bid cumulative functions 1 (; )  2 (; ) and

hence the bidder’s expected payoffs are continuous in   .

6. Because a bidder’s expected payoff when he bids strictly above 

has strictly increasing differences in his bid and value, equilibrium bidding

strategies must be nondecreasing and consequently, from 5., strictly increas-

ing (when taking values strictly above ) and, from 3., continuous. Thus,

for all  and   ,  (; ) =  ( (; )).

7. Any bidder’s probability of winning is differentiable with respect to

his own bid strictly above . The main idea of the proof is to express that
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an optimal  is better for bidder  with value  than a bid 0 as the inequality

below;

 (; )− (
0; )

− 0
≥  (

0; )
 − 

− 1− 

 − 

R 
0  (; ) 

− 0
,

if 0 ≤  and the reverse inequality if 0 ≥ . Making − 0 tend towards zero

in such inequalities and appealing to the continuity of  above  (from 5.)

gives the result.

8. From 7., the inverse bidding functions are differentiable strictly above

 and satisfy the system of differential equations (1). Moreover, from 3., we

must have 1 ( () ; ) = 2 ( () ; ) =  and  (; ) = , for at least one

. That actually  (; ) =  for both  = 1 2 is a property of the differential

system and follows from Corollary 6 in Lebrun (1999).

Proof of Lemma A2:

Proof of (i): For all  in ( ] and all   0, we obviously have:
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and consequently
()
()

is integrable for
³
()
()

´
over [ ]. The equality in

(i) then follows from the weak convergence of
³
()
()

´
towards the degenerate

distribution  concentrated at  when  tends towards +∞.
Proof of (ii): The first statement is an immediate consequence of (i).

Let  be an arbitrary strictly positive number. From the convergence at ,

there exists 0 such that
¯̄̄

R 

 ()  − ()

()

¯̄̄
 , for all   0. Let  be

the maximum over the interval [ ] of
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2. We have   +∞.

Indeed, as ()  () = 1 

ln () is nondecreasing in an interval [ + ]
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and tends towards 0 when  tends towards , we have 
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interval. Furthermore, we have:¯̄̄̄
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with  is a bound of
¯̄̄
 () =

 ln ()
 ln()

¯̄̄
1.

Consider then any  such that   max (0). Then,
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From the definition of 0, the inequality holds true if the maximum is reached

at . The inequality is obviously satisfied if the maximum on the LHS is

zero. We may thus that it is strictly positive and, hence, that it is not

reached at  = .

Assume then that the maximum is different from zero and reached at ∗

in the interior of the interval. In this case, the FOC is:

 − 
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1Log-concavity at  and the existence of a lower bound on  imply that  is bounded.
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Consequently:
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Proof of Lemma A3:

(i) follows from  ()→ +∞ if → .

Extend 1 2 (for example, linearly) as continuously differentiable and

strictly positive functions over ( + 2), with   0. Finally, use the

same formula in the definition to extend  (; ) to ( + 2) × (−2 0 2 0),
where  0  0. As the partial derivatives will be continuous over ( + 2)×
(−2 0 2 0), the extension will be continuously differentiable over this prod-
uct.

From the definition, 0 (; ) is equal to 1−  ()
−2 


 (). From our

assumptions (in particular of local log-concavity at ), 

 () is bounded

from above and consequently there exists 0     0 such that 0 (; ) is

strictly above −
+− , which belongs to (0 1), over ( + )× (− ).

From the definition also, 

 (; ) is equal to  ()

−1
, which is bounded

from above.

As  (; ) =  and 0 (; ) is strictly above
−

+− over ( + ) ×
(− ),  (; ) is a strictly increasing function over ( + ) such that

 (+ ; )  , for all  in (− ). (ii) is proved.
We then have 

¡
−1 (; ) ; 

¢
= , for all ( ) in ( ]× (− ). For
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all such ( ), the implicit function theorem implies that 

−1 (; ) exists

and is equal to − 


¡
−1 (; ) ; 

¢
0
¡
−1 (; ) ; 

¢
. (iii) follows. ||

Proof of Lemma A5:

Proof of (i): Follows directly from the definition of  ().

Proof of (ii): From Lemma A3 (ii), for all  = 1 2, 0 (; ) tends

towards one uniformly for  in any compact subinterval of ( ]. As, from

LemmaA3 (ii),  (; ) tends towards  for all ,
¡
−1
¢0
(; ) = 10

¡
−1 (; ) ; 

¢
tends towards one and −1 (; ) tends towards  uniformly in  ∈ [  (; )],
for all   2. As 2 ([  ()] ; ) ⊆ [ 1 (; )], −11 (2 (; ) ; ) tends to-

wards  and its derivative tends towards one uniformly over any interval

[  ()]. (ii) then follows from the definition of Ψ (; ).

Proof of (iii): That Φ (; ) tends to Λ uniformly over any compact

subinterval of (−∞ 0) follows directly from Theorem 2 and the definitions

of Φ (; ) and Λ.

Let be an arbitrary compact subinterval of (−∞ 0). We prove first the

uniform convergence over  of the derivative Φ0 (; ) towards the derivative

 of Λ. From the compactness of , it suffices to prove:

lim
()→(0)

Φ0 (; ) = ,

for all  in . Let   0 be such that −  min.

Suppose there exists  in  such that lim()→(0)Φ0 (; ) 6= . Then,

there exists   0 and a sequence (; )≥1 converging towards (; 0) such

that:

|Φ0 (; )− |  . (1)

From (i), (ii) above and because the left-hand derivativeΨ0
 (; ) is zero to the

right of ln1 ( ()), there exists 
0  0 and  such that max  −  0

2That is, for all  and for all   0, there exists 0  0 such that¯̄̄¡
−1

¢0
(; )− 1

¯̄̄
,
¯̄
−1 (; )− 

¯̄ ≤ , for all 0    0 and  in [  (; )].
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and for all   0:

|Ψ0 (; )− |  2, (2)

for all  in [−−], and

Ψ0 (; )   + 2,

for all  in [− 0]. As the limit  of ()≥1 belongs to  and hence to the

interior of [−−], we may assume that ()≥1 is included in [−−].
We subdivide the rest of the proof in four parts.

(a) In (a) and in (b) below, we suppose that lim→+∞Φ
0 (; )  −

. Extracting the subsequence if necessary, we may assume lim→+∞Φ0 (; ) 

 − . There then exists ∗  0, which we may assume larger than 0, such

that:

Φ0 (; )   − ,

for all   ∗.

Here in (a), we consider the case where there exists a subsequence ()≥1
such that  ≥ ∗ and Φ ( ; ) ≤ Ψ ( ; ), for all  ≥ 1. Extracting

the subsequence again if necessary, we may assume that this the case of the

original sequence. For all  ≥ ∗, as, from (1) and (2), Φ0 (; )  Ψ0 (; ),

there exists   0, such that Φ (; )  Ψ (; ), for all  in (  + ).

From Lemma A4 (iv), as Φ (; ), being below Ψ (; ), is concave over

(  + ), we have Φ0 (; )   − , for all  in (  + ). As long

as it remains strictly below Ψ (; ), Φ (; ) will remain strictly concave

and its derivative will decrease and therefore will remain smaller than  − 

if  increases. As, from (2), Ψ0 (; )   − 2, Φ (; ) will never meet

again Ψ (; ) to the right of . Consequently, for all  ≥ ∗, Φ (; ) is

strictly concave over (−) and Φ0 (; )   −  over this interval. As

 tends towards   −, for all  large enough   (−) 2 and hence

Φ0 (; )  −  over ((−) 2−). The different functions are then as
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in Figure 1 below.
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FIGURE 1: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not larger than Ψ (; ).
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For all  large enough, we then have:Z −

(−)2
Φ0 (; )   (−−) ( − ) 2.

However, Φ (; ) tends towards Λ and consequently we also have, from :

lim
→+∞

Z −

(−)2
Φ0 (; ) 

= lim
→+∞

(Φ (−; )−Φ ((−) 2; ))

= Λ (−)− Λ ((−) 2)

=  (−−) 2,

and we obtain a contradiction.

(b) We consider next the case where there exist a subsequence

()≥1 such that  ≥ ∗ and Φ ( ; )  Ψ ( ; ), for all  ≥ 1. Ex-

tracting the subsequence if necessary, we may again assume that this holds

true for the original sequence. From Lemma A4 (iv), as long as it remains

strictly above Ψ (; ), Φ (; ) will remain strictly convex and its derivative

will decrease and therefore will remain smaller than −  if  decreases. As,

from (2), Ψ0 (; )   − 2, Φ (; ) will never meet Ψ (; ) to the left of

. Consequently, for all  ≥ ∗, Φ (; ) is strictly convex over (− ) and

Φ0 (; )  −  over this interval. As  converges towards , for all  large

enough Φ (; ) is strictly convex over
¡− −

2

¢
and Φ0 (; )  −  over

this interval. The configuration of the graphs are as in Figure 2 below.
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FIGURE 2: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not smaller than Ψ (; ).

For all such , we then have:Z (−)2

−
Φ0 (; )   (+) ( − ) 2.
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However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. As (a) and (b) exhaust all possibilities, we

have ruled out lim→+∞Φ
0 (; )   − .

(c) Here and in (d) below, we suppose that lim→+∞Φ0 (; )  +.

As above, we may assume that lim→+∞Φ0 (; )   + . Consequently,

there exists ∗  0, which we may assume larger than 0 such that:

Φ0 (; )   + ,

for all   ∗.

We show that, for all   ∗, Φ (; )  Ψ (; ). Suppose there exists

  ∗ such that Φ (; ) ≥ Ψ (; ). As Φ
0 (; )  Ψ0 (; ), there exists

  0 such that Φ (; )  Ψ (; ), for all  in (  + ). From Lemma

A4 (iv), Φ (; ) is convex over (  + ), and we have Φ
0 (; )   + ,

for all  in (  + ). As long as it remains strictly above Ψ (; ), Φ (; )

will remain strictly convex and its derivative will increase and therefore will

remain larger than  +  if  increases. As Ψ0
 (; )   + 2, Φ (; )

will never meet again Ψ (; ) and therefore will stay strictly above it to

the right of . See Figure 4 in the paper. However, this contradicts

Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

(d) From (c), Φ (; )  Ψ (; ), for all   ∗. As long as it

remains strictly below Ψ (; ), Φ (; ) will remain strictly concave and

its derivative will increase and therefore will remain larger than  +  if 

decreases. As, from (2), Ψ0 (; )  +2, Φ (; ) will never meet Ψ (; )
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to the left of . Consequently, for all  ≥ ∗, Φ (; ) is strictly concave over

(− ) and Φ0 (; )   +  over this interval. As  converges towards

, for all  large enough Φ (; ) is strictly concave over (− (−) 2)

and Φ0 (; )   +  over this interval. See Figure 5 in the paper for an

illustration of this case.

For all  large enough, we then have:Z (−)2

−
Φ0 (; )   (+) ( + ) 2.

However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. We have ruled out lim→+∞Φ0 (; )  + 

and completed the proof of (iii).

Proof of (iv): Suppose lim(;)→(0;0)Φ0 (; )  . There then exist   0

and a sequence (; )≥1 tending towards (0; 0) and such that Φ
0 (; ) 

+ , for all . We may assume that ()≥1 is included in a compact interval

[− 0]. As in the proof of (iii) above, from (i) and (ii) there exists ∗, such

that Ψ0
 (; )   + 2,for all   ∗ and  in [− 0].

As in part (c) of the proof of (iii) above, we can rule out Φ (; ) ≥
Ψ (; ) for some   ∗. We may then assume Φ (; )  Ψ (; ), for

all   ∗. For any   ∗, as longs as Φ (; ) does not meet Ψ (; )

it will remain strictly concave and therefore its derivative will increase and

hence will be larger than +  if  decreases within [− 0]. However, from

Ψ0 (; )   + 2, Φ (; ) will never meet Ψ (; ) to the left of  within
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[− 0]. Consequently, Φ0 (− ; )  + , for all   ∗. This contradicts

(iii) and we have proved (iv).

Proof of (v):

(a) Differentiating the definition of Ψ, it is straightforward to find

the following expression:

Ψ0 (; )

=
2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

1 +  − 1 (exp )

1 +  − 2 (expΨ (; ))
, (4)

where  () is the elasticity of the density 
¡
−1 ()

¢
with respect to the

cumulative probability . From the convergence, from (ii), ofΨ (; ) towards

Λ (), there exists   0 such that 2 =  
1 is log-concave and hence 2 ≤

1 over
£
 −12 (expΨ (; ))

¤
. From Lemma A4 (i), −12 (expΨ (; )) ≥

−11 (exp ). Consequently, for all   , we have:

2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

≤ 2
¡
−11 (exp )

¢
exp 

1
¡
−11 (exp )

¢
2

−1
1 (exp )

= ,

where the equality follows from 2 = 1. From (4) and 2 ≤ 1, we then
find, for all   :

Ψ0 (; )

≤  (1 +  − 1 (exp ))

≤  (1 +  + ) ,
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with − the lower bound of 1. The inequality lim(;)→(−∞;0)Ψ0 (; ) ≤ 

follows.

(b) We will prove lim→0 sup∈R− Φ
0 (; ) ≤ . This will obviously

imply (v). First, note Φ0 (0; ) = 1, for all . Let  be an arbitrary strictly

positive number. From (ii) and part (a) above of the current proof, there

exists 0 such that Ψ0 (; )  + 2, for all 0    0 and all  in (−∞ 0).

Suppose there exists  in (−∞ 0) and   0 such that Φ0 (; ) 

 + . Assume first Φ (; ) ≤ Ψ (; ). Then, proceeding as in the

proofs above, Φ (; ) remains concave and below Ψ (; ) and Φ0 (; ) re-

mains above  +  everywhere to the left of . Consequently, there exists 

in (− (Φ (; )− Λ ())  ) such that Φ (; ) = Λ (). This contradicts

Lemma A4 (iii).

Suppose next Φ (; )  Ψ (; ). Then, Φ (; ) remains strictly convex

and strictly above Ψ (; ) everywhere to the right of . However, this

contradicts Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

We have proved sup∈R− Φ
0 (; ) ≤ + , for all   0, and consequently

lim→0 sup∈R− Φ
0 (; ) ≤  + . As  was arbitrary, the result follows. ||
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