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Proof of the necessity of the characterization in Theorem 1 (i):

1. A bidder’s weakly undominated strategy must not recommend bidding
strictly above his value and (i.1) follows.

2. From 1., any bidder with value v > ¢ has a strictly positive expected
payoff and hence c is the minimum of the support of either bid’s distribution.
Myerson (1981) implies the continuity and monotonicity with respect to his
value of any bidder’s interim expected payoff.

3. If b > cis in a bidder’s bid support, it must be a point of increase to
the left of both bidders’ bid cumulative functions. Otherwise, there would
exist a gap (b — ¢, b] where no bidder bids and any bidder who is supposed
to bid close to b would increase his payoff strictly if he bid b—¢ instead. As
a consequence, the supports of the bid distributions are equal to the same
interval [c,n (k)].

4. There does not exist a bid b > ¢ that is a mass point of both bidders’
bid distributions. Because the value distributions are atomless, if there
existed such a bid, a bidder would submit b with a strictly positive probability
for some values strictly smaller than b. This bidder would increase strictly
his payoff if he bid slightly above b instead.

5. The bid distributions are atomless strictly above c. In fact, from 4.
above, there could only exist an atom b > ¢ of the bid distribution of a single
bidder, say bidder j. From 3., bidder ¢ # j bids at or below and arbitrarily
close to b. For a deviation slightly above b by bidder ¢ not to be strictly
profitable, his value must approach b when his bid approaches b. From the



continuity in 2., his payoff when his value is b must therefore be:

(1—k)/ (b—w)dG; (w; k),

where G, (.; k) is bidder j’s bid cumulative distribution function. While if
bidder ¢ submits bids close to and above bid b — ¢, with ¢ > 0, his payoff

would tend towards:
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> (1—k)/b(b—w)de(w;k),

where the last inequality holds for all ¢ > 0 sufficiently small. Bidder
would then have a strictly profitable deviation, which is impossible at an
equilibrium.

This also proves that the bid cumulative functions G, (b; k), G2 (b; k) and
hence the bidder’s expected payoffs are continuous in b > c.

6. Because a bidder’s expected payoff when he bids strictly above ¢
has strictly increasing differences in his bid and value, equilibrium bidding
strategies must be nondecreasing and consequently, from 5., strictly increas-
ing (when taking values strictly above ¢) and, from 3., continuous. Thus,
for all i and b > ¢, G; (b; k) = F; (o (b; k)).

7. Any bidder’s probability of winning is differentiable with respect to

his own bid strictly above ¢. The main idea of the proof is to express that



an optimal b is better for bidder ¢ with value v than a bid b as the inequality

below;

Gy (Wsk) 1=k fy G (wsk) dw
b—b T ey e

if ¥’ < b and the reverse inequality if &’ > b. Making b — b’ tend towards zero
in such inequalities and appealing to the continuity of G; above ¢ (from 5.)
gives the result.

8. From 7., the inverse bidding functions are differentiable strictly above
¢ and satisfy the system of differential equations (1). Moreover, from 3., we
must have oy (1 (k) ; k) = as (n(k); k) = d and «; (¢; k) = ¢, for at least one
i. That actually «; (¢; k) = ¢ for both i = 1,2 is a property of the differential
system and follows from Corollary 6 in Lebrun (1999).

Proof of Lemma A2:
Proof of (i): For all v in (¢,d] and all [ > 0, we obviously have:

[ (&) o
- [ (E)
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and consequently % is integrable for ( G(U)> over [c,v]. The equality in

!
(i) then follows from the weak convergence of <%> towards the degenerate

distribution 9, concentrated at v when [ tends towards +oo.
Proof of (ii): The first statement is an immediate consequence of (i).

Let £ be an arbitrary strictly positive number. From the convergence at d,

L[IG (w) dw— S| < e, foralll > 1. Let M be

there exists I’ such that @

/2. We have M < +o0.

the maximum over the interval [c, d] of ‘% (G(v )

Indeed, as G (v) /g (v) = 1/< In G (v) is nondecreasing in an interval [c, ¢ + 7]



2
and tends towards 0 when v tends towards ¢, we have % <G(”)> > 0 in this

interval. Furthermore, we have:
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with B is a bound of ‘ag (v) = jfr?g((f,)) L

Consider then any [ such that [ > max (I, M/e). Then,

[ (G -G

From the definition of I, the inequality holds true if the maximum is reached

dlng(v)
~ dInG (v)

IN

max < E&.

vE|[c,d]

at d. The inequality is obviously satisfied if the maximum on the LHS is
zero. We may thus that it is strictly positive and, hence, that it is not
reached at v = c.

Assume then that the maximum is different from zero and reached at v*

in the interior of the interval. In this case, the FOC is:

l_lf” Gw)dwg@w)l dGv)
G ) G(v) dv g (v*)

or, equivalently:

[ G W) dw G (| 1dG@)
: G g (1 ldvg(v*))'

'Log-concavity at ¢ and the existence of a lower bound on ¢, imply that €, is bounded.



Consequently:
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Proof of Lemma A3:

(i) follows from p; (b) — +o0 if b — c.

Extend py, py (for example, linearly) as continuously differentiable and
strictly positive functions over (c,d + 2u), with 4 > 0. Finally, use the
same formula in the definition to extend v, (.;.) to (¢, d + 2u) x (=2¢',2¢),
where ¢’ > 0. As the partial derivatives will be continuous over (¢, d + 2u) X
(—2¢’,2("), the extension will be continuously differentiable over this prod-
uct.

From the definition, v; (b; k) is equal to 1 — kp; (b))~ Lp;(b). From our
assumptions (in particular of local log-concavity at c), %p. (b) is bounded
from above and consequently there exists 0 < ¢ < ¢’ such that 7} (b; k) is
strictly above 2= which belongs to (0, 1), over (¢,d + i) x (¢, ().

d+p—c
From the definition also, v, (b; k) is equal to p; (b)~", which is bounded

from above.

d—c
d+p—c

(—¢,0), v, (:;k) is a strictly increasing function over (¢,d+ p) such that
v (d+ p; k) > d, for all k in (—¢, (). (ii) is proved.
We then have v; (7; " (v;k); k) = v, for all (v, k) in (¢,d] x (=¢,¢). For

As 7, (¢;k) = ¢ and +} (b; k) is strictly above over (c,d+ p) X
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all such (v, k), the implicit function theorem implies that %7] ' (v; k) exists
and is equal to —2; (v; " (v; k) ; k) /7 (i (vs k) s k). (iii) follows. ||

Proof of Lemma Ab5:

Proof of (i): Follows directly from the definition of x (k).

Proof of (ii): From Lemma A3 (ii), for all i = 1,2, «} (b;k) tends
towards one uniformly for b in any compact subinterval of (¢,d]. As, from
Lemma A3 (ii), 7, (b; k) tends towards b for all b, (7;1)/ (b; k) =1/ (v " (b k) ; k)
tends towards one and 7; ! (b; k) tends towards b uniformly in b € [b, v, (d; k)],
for all b > ¢*. As yy ([b, 2 (k)]s &) C [b,71 (&5 K)], 71" (72 (b5 k) 5 &) tends to-
wards b and its derivative tends towards one uniformly over any interval
b,z (k)]. (ii) then follows from the definition of W (.; k).

Proof of (iii): That ®(.;k) tends to A uniformly over any compact
subinterval of (—o0,0) follows directly from Theorem 2 and the definitions
of @ (.;k) and A.

Let K be an arbitrary compact subinterval of (—oc,0). We prove first the
uniform convergence over K of the derivative @' (.; k) towards the derivative
[ of A. From the compactness of K, it suffices to prove:

lim @ (s;k) =1,
(s,k)—(1,0)
for all w in K. Let M > 0 be such that —M < min K.

Suppose there exists v in K such that limsg)— w0 P (s;k) # . Then,
there exists ¢ > 0 and a sequence (s; k;),~,; converging towards (u;0) such
that: )

1D (845 k) — 1] > €. (1)

From (i), (ii) above and because the left-hand derivative V] (u; k) is zero to the
right of In F (z (k)), there exists ¢’ > 0 and m such that max X' < —m < 0

2That is, for all b and for all ¢ > 0, there exists ¥ > 0 such that
‘(%—1)’ (byk) —1[,|v; " (bsk) —b| <&, for all 0 < k < k" and b in [b, 7, (d; k)]




and for all ¢t > t:
[ (55 k) — 1] < /2, (2)

for all s in [—M, —m], and
Ul (u; k) < l+4¢/2,

for all w in [~m,0]. As the limit u of (s;),., belongs to K and hence to the
interior of [—M, —m], we may assume that (s;),-, is included in [-M, —m].

We subdivide the rest of the proof in four parts.

(a) In(a)andin (b) below, we suppose that lim, . ®' (s;;k;) < 1—
e. Extracting the subsequence if necessary, we may assume lim;_, ;o @ (545 k) <
[ —e. There then exists t* > 0, which we may assume larger than ', such
that:
' (sihe) <l —e,

for all t > t*.

Here in (a), we consider the case where there exists a subsequence (k;, ), ~,
such that ¢, > t* and @ (sy.; ki) < W (s4,; k), for all r > 1. Extractir_lg
the subsequence again if necessary, we may assume that this the case of the
original sequence. For all t > t*, as, from (1) and (2), O (s k) < V' (545 k),
there exists 0; > 0, such that ® (s;k;) < ¥ (s; k), for all s in (s, 5¢ + 0;).
From Lemma A4 (iv), as ® (s;k:), being below W (s;k;), is concave over
(st,8:+0;), we have & (s; k) < | — ¢, for all s in (s4,s,+6;). As long
as it remains strictly below W (s;k;), @ (s¢; k) will remain strictly concave
and its derivative will decrease and therefore will remain smaller than [ — ¢
if s increases. As, from (2), V' (s;k;) > | —¢/2, @ (s; k) will never meet
again W (s; k;) to the right of s;. Consequently, for all ¢ > t*, ® (s;k;) is
strictly concave over (s;, —m) and ®’ (s;k;) < [ — & over this interval. As
s; tends towards u < —m, for all ¢ large enough s; < (u—m) /2 and hence

' (s; k) <l—e over ((u—m)/2,—m). The different functions are then as



in Figure 1 below.

1in FQ(UQ)

1 K “m InR®) 0
l l u=1n Fi(v)

FIGURE 1: Ruling out @’ (.; k) further below [ than ¥’ (.; k) is while @ (.; k)
is not larger than W (.; k).



For all ¢ large enough, we then have:

/(m D (s5k)ds < (—u—m) (I —¢) /2.

u—m)/2

However, ® (.; k) tends towards A and consequently we also have, from :

lim O (s;ky) ds
t=400 J(u—m)/2

= lim (®(—m;k) — @ ((u—m)/2; k)

= A(=m) = A((u—-m)/2)
= l(—u—m)/2,

and we obtain a contradiction.

(b) We consider next the case where there exist a subsequence
(kt,),~; such that t, > t* and ® (s;,; ki) > VU (s,,; k), for all r > 1. Ex-
tractizlg the subsequence if necessary, we may again assume that this holds
true for the original sequence. From Lemma A4 (iv), as long as it remains
strictly above W (s; k;), ® (s; k;) will remain strictly convex and its derivative
will decrease and therefore will remain smaller than [ — ¢ if s decreases. As,
from (2), W' (s; k) > 1 — /2, @ (s; k) will never meet U (s; k;) to the left of
s¢. Consequently, for all t > t*, ® (s; k) is strictly convex over (—M, s;) and

' (s; k) < | — ¢ over this interval. As s; converges towards u, for all ¢ large

enough @ (s; k) is strictly convex over (—M, M) and &' (s; k) < [ —¢ over

this interval. The configuration of the graphs are as in Figure 2 below.



1n F2<U2>
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FIGURE 2: Ruling out @’ (.; k) further below [ than ¥’ (.; k) is while ® (.; k)
is not smaller than ¥ (.; k).

For all such ¢, we then have:

/ T k) ds < (u MY (1 — ) J2.
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However, we also have:

(u—M)/2
tlg»noo » ' (s; k) ds
= tEeroo((I)((u—M)/Z;kt)—q)(_MBkt))
= A((u—M)/2) = A(—M)

and we obtain a contradiction. As (a) and (b) exhaust all possibilities, we
have ruled out lim, ,  ®' (s:; ki) <1 —e.

(c) Here and in (d) below, we suppose that lim,_, ;oo ®' (s:; k) > [+e¢.
As above, we may assume that lim; ., &' (s4; k) > [ +¢e. Consequently,

there exists t* > 0, which we may assume larger than t' such that:
' (s ke) > 1 +e,

for all ¢ > t*.

We show that, for all t > t*, ® (s4; k) < U (s4; k). Suppose there exists
t > t* such that ® (s;; ki) > V(s ke). As @ (s¢; k) > V' (545 k), there exists
0, > 0 such that ® (s; k) > ¥ (s; k), for all s in (sg, s¢ + 6;). From Lemma
A4 (iv), @ (s; k) is convex over (s;, s; + 0;), and we have &' (s;k;) > | + &,
for all s in (s, s, + 0;). As long as it remains strictly above W (s; k;), @ (s; k)
will remain strictly convex and its derivative will increase and therefore will
remain larger than [ + ¢ if s increases. As V) (s;k) < I +¢/2, @ (s;k)
will never meet again W (s; k) and therefore will stay strictly above it to
the right of s;. See Figure 4 in the paper. However, this contradicts
O (InFy (z(ky)); k) <0=V(InFy (x(ky)); k).

(d) From (c), @ (sy; k) < U (st ki), for all ¢ > t*. As long as it
remains strictly below W (s;k;), ® (s;k;) will remain strictly concave and
its derivative will increase and therefore will remain larger than [ + ¢ if s
decreases. As, from (2), ¥/ (s; k) < l+¢/2, ® (s; k) will never meet U (s; k)
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to the left of s;. Consequently, for all ¢t > t*, ® (s; k;) is strictly concave over
(=M, s;) and @ (s; k) > | + ¢ over this interval. As s; converges towards
u, for all t large enough @ (s;k;) is strictly concave over (—M, (u— M) /2)
and @' (s;k;) > [ + € over this interval. See Figure 5 in the paper for an
illustration of this case.

For all ¢ large enough, we then have:

/ T k) ds > (M) (14 2) f2.

However, we also have:

(u—M)/2
tLi+moo » ' (s; k) ds
= Jim (@ ((u— M) /2 k) = D (=M; k)
= A((u—M)/2) = A(=M)

and we obtain a contradiction. We have ruled out limy_, oo ®' (5,5 k¢) > [ +¢

and completed the proof of (iii).

Proof of (iv): Suppose m(s;k)ﬂ(o;o)qf (s;k) > 1. There then exist £ > 0
and a sequence (S;; k¢),~, tending towards (0;0) and such that ' (s;; k) >
[+e¢, forallt. We may_assume that (s;),~, is included in a compact interval
[—M,0]. As in the proof of (iii) above, from (i) and (ii) there exists t*, such
that W) (s; k) <l4¢/2(for all t > t* and s in [—M, 0].

As in part (c) of the proof of (iii) above, we can rule out ® (s k) >
U (s4; ki) for some ¢t > t*.  We may then assume D (s4; k) < W (545 k), for
all ¢ > t*. For any t > t*, as longs as ® (s;k;) does not meet U (s; k)
it will remain strictly concave and therefore its derivative will increase and
hence will be larger than [ 4 ¢ if s decreases within [—M,0]. However, from
Ui (s k) <l+¢/2, ®(s; k) will never meet W (s; k;) to the left of s; within
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[—M,0]. Consequently, ® (—M;k;) > [+ ¢, for all ¢ > *. This contradicts

(iii) and we have proved (iv).

Proof of (v):

(a) Differentiating the definition of WU, it is straightforward to find

the following expression:

v (s; k)

f2 (Fy ' (exp W (s;k))) exps

fl( exps)exp\I’ (s; k)
1+ k — key (exps)

1+ k — keg (exp V¥ (s;k))’ )

where ¢; (p) is the elasticity of the density f; (F; " (p)) with respect to the

cumulative probability p. From the convergence, from (ii), of ¥ (s; k) towards

A (s), there exists 3 < 0 such that Fy = FY} is log-concave and hence &5 <
1 over [¢, Fy ' (exp VU (5;k))].  From Lemma A4 (i), F; ' (exp ¥ (s;k)) >

Fy ' (exps). Consequently, for all s < 5, we have:

fa (FQ_1 (exp ¥ (s; k))) exp s

fi (Fi ' (exps)) exp W (s; k)

fo (Fy " (exps)) exp s

fi (Ff1 (exp s)) FyF7 1t (exp s)
L

where the equality follows from p, = lp;. From (4) and e < 1, we then

find, for all s <'&:

U’ (5 k)
[(1+Fk—key(exps))
< I(1+k+kB),

IN
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with —B the lower bound of ;. The inequality E(s;k)ﬂ(,m;o)qf’ (s;k) <1
follows.

(b) We will prove limy_gsup,cp @' (s;k) < [. This will obviously
imply (v). First, note &’ (0; k) = 1, for all k. Let € be an arbitrary strictly
positive number. From (ii) and part (a) above of the current proof, there
exists &’ such that W) (s;k) < l+¢/2,forall0 < k < k' and all s in (—00,0).

Suppose there exists u in (—o0,0) and k& < k' such that &' (u;k) >
[ + e Assume first ® (u;k) < W (u;k). Then, proceeding as in the
proofs above, ® (.;k) remains concave and below W (.;k) and @' (.;k) re-
mains above [ 4 € everywhere to the left of u. Consequently, there exists w
in (u— (P (u; k) — A (u)) /e, u) such that ® (w; k) = A (w). This contradicts
Lemma A4 (iii).

Suppose next ® (u; k) > W (u; k). Then, ® (s;k) remains strictly convex
and strictly above W (s;k) everywhere to the right of u. However, this
contradicts @ (In Fy (z (k));k) < 0=V (InF (x (k)); k).

We have proved sup,cp @' (s;k) < l+e¢, for all £ > k', and consequently

limy_osup,ep @' (s;k) <1+¢e. Ase was arbitrary, the result follows. ||

14



