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REVENUE COMPARISON
BETWEEN THE FIRST AND SECOND PRICE AUCTIONS

IN A CLASS OF ASYMMETRIC EXAMPLES.

1.Introduction.
The first price auction is the selling procedure where the highest bidder is awarded the
item and pays the price equal to his bid.  In the second price auction, the highest bidder is
still awarded the item but pays the second highest bid, that is, the highest rejected bid.
We work in the "independent private value model" where the bidders' valuations of the
item are privately known and independently distributed.

In the second price auction, bidding his true valuation is the unique weakly
dominant strategy.  There thus exists a unique equilibrium in weakly dominant strategies.
In the first price auction, no weakly dominant strategy exists.  In the symmetric case
where the bidders' valuations are identically distributed, there exists a general
mathematical expression for the unique Bayesian equilibrium.  In this case, the celebrated
"Revenue Equivalence Theorem" (see Riley and Samuelson, 1981) states that these
equilibria of these auction procedures give the same expected revenues to the seller.

When the valuations are not identically distributed, the Revenue Equivalence
Theorem does not hold true, there is no general ranking of the expected revenues (see
Vickrey, 1961 and Maskin and Riley, 1995) and no general expression seems to exist for
the equilibrium of the first price auction.  For one of the rare natural asymmetric cases
where it is possible to find closed mathematical formulas, see Griesmer, Levitan and
Shubik (1967).  Even the existence of the equilibrium is not always guaranteed.
However if, for example, the valuations are absolutely distributed over the same interval
according to at most two different valuation distributions with a relation of stochastic
dominance between them, it is possible to prove the existence and uniqueness of the
equilibrium (see Lebrun, 1996).  Such a set of valuation distributions can follow from
collusion into cartels by bidders with identical valuation distributions.  A cartel which
maximizes the sum of its members' payoffs, has total control over its members' bids and
perfect information about his members' valuations, can be considered as one bidder
whose valuation is the maximum of its members'.  In fact, if it wins the cartel will
allocate the item to its member with the highest valuation.  The valuation distributions of
the cartels will thus be powers of the same distribution.  For example, if the bidders'
valuations were initially distributed according to a uniform distribution F v   v, aÐ Ñ œ
cartel's valuation distribution will be F v   v , where  is the number of its members.# #Ð Ñ œ #

Marshall, Meurer, Richard and Stromquist (1994) approximate numerically the
equilibria of several examples where the two different distributions F  and F  are powers" #

of the uniform distribution, that is, F v v  and F v v , with 0 .  In their" #Ð Ñ œ Ð Ñ œ  # $ # $
examples, they found that the seller's revenue at the first price auction is strictly higher
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than at the second price auction.  As simple examples by Maskin and Riley (1985) show,
we cannot expect the same ranking to hold for all situations where F F  and F F ." #œ œ# $

Analytical and numerical results are also obtained by Maskin and Riley (1995).

At the equilibrium in weakly dominant strategies of the second price auction, the
winner of the auction is the bidder with the highest valuation.  In the case with two
bidders, bidder 1 and bidder 2, and valuation distributions F F  and F F , with" #œ œ# $

0 , the optimal auction procedure described by Myerson (1981) favors bidder 1, # $
in the sense that a strictly higher valuation for bidder 2 is not a guarantee to win the
auction.  This valuation must be sufficiently higher.

At the equilibrium of the first price auction, bidder 1 bids more aggressively then
bidder 2 does (see Maskin and Riley, 1995, and Lebrun, 1995 and 1996).  For the same
valuation, bidder 1's bid will be strictly larger than bidder 2's.  Consequently, at the
equilibrium of the first price auction bidder 1 and only he can win with a smaller
valuation.  The optimal auction procedure and the first price auction thus favor the bidder
with the dominated valuation distribution.  However the two procedures are not
equivalent and the seller's revenue would be increased if, at the equilibrium of the first
price auction and for large valuations of bidder 1, bidder 2's valuation needed not be as
high above bidder 1's in order to win.

In this paper, we prove that the first price auction with two bidders still gives
higher revenues than the second price auction when F v v  and F v v ," #Ð Ñ œ Ð Ñ œ# $

0 , and when   1/2.  In particular, the first price auction outperforms the   # $ #$
second price auction when the bidders are cartels whose members valuations are
distributed uniformly, that is, 1.  The uniform distribution may reflect the lack$ #  
by cartel's members of precise information about the others' valuations.

The proof proceeds by bounding the bias at the equilibrium of the first price
auction towards bidder 1 with high valuations, and showing that it is not substantial
enough to offset the beneficial effect on the revenue of favoring bidder 1.  If the first
price auction equilibrium strategies are , , bidder 2's v  has to be larger thanÐ Ñ" "" # #

9 " "Ð Ñ œ Ð Ñv v , where v  is bidder 1's valuation, in order to win.  The bound on the" " " "#
"

bias is obtained by showing that the "elasticity"  is nonincreasing and not largerdln v
dlnv
9Ð Ñ

than 1.  It turns out that for our choice of distributions, these properties are sufficient to
establish the superiority of the first price auction.

Our proof is elementary.  The properties of the function  are derived by9
inspection of the differential equations the equilibrium strategies satisfy.  The analytical
integration of a mathematical expression then provides the ranking of the first and second
price auctions.

2.The First and Second Price Auctions.
An item is sold at auction.  Bidders 1 and 2 are the only two bidders.  We denote bidder
1's valuation by v  and bidder 2's valuation by v .  The bidders' valuations v , v  are" # " #

independently distributed over 0, 1  according to the couple of distributions F v   vÒ Ó Ð Ñ œ"
#

and F v   v , with 0    .  These distributions as well as the rules of the#Ð Ñ œ  $ # $
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auction procedures are common knowledge.  Only bidder i knows v .  In both auction3

procedures every bidder has to submit a bid.  The item goes to the highest bidder who
pays a price equal to his bid in the first price auction and equal to his opponent's bid in
the second price auction.

A strategy   of bidder i defines a bid probability distribution v, . , for every v"
3 3" " Ð Ñ

in 0, 1 .  A strategy  is pure if all the probability distributions v, .  it defined areÒ Ó Ð Ñ" "3 3

degenerate distributions.  We identify a pure strategy with the bid function it determines.
A Bayesian equilibrium is defined as usual.  A pure Bayesian equilibrium is a couple of
pure strategies which form a Bayesian equilibrium.

In the second price auction, although there exist many equilibria it is well known
that the pure strategy Bayesian equilibrium ,  where v v, for all v in 0, 1 , isÐ Ñ Ð Ñ œ Ò Ó" " "
the only equilibrium in weakly dominant strategies.  In this paper we always assume that
the bidders follow the weakly dominant strategy in the second price auction.  In Lemma 0
below, we state useful results pertaining to the first price auction and which follow from
Lebrun (1995, 1996).

Lemma 0:  Under our assumptions, there exists one and only one Bayesian equilibrium
Ð Ñ" " "" # ",  of the first price auction.  This unique equilibrium is pure and its strategies 
and  are continuous and strictly increasing over 0, 1  and such that"# Ò Ó

(1) 0 0 0, 1 1 1" " " "" # " #Ð Ñ œ Ð Ñ œ Ð Ñ œ Ð Ñ 

and v v , for all v in 0, 1 .  Moreover the functions  and  form a" " 9 " " "" # " "#
"Ð Ñ  Ð Ñ Ð Ñ œ

solution over 0, 1  of the following system of differential equations,Ð Ó

(2) v     d
dv v v v

v v v9 # 9 9 "
$ "Ð Ñ œ Ð Ñ Ð Ñ Ð Ñ

 Ð Ñ
"

"

(3) v    v v .d
dv v
" #Ð Ñ œ Ð  Ð ÑÑ""

We also have the following bounds for the function ,9

(4) v  v   v , Ð Ñ 9 # $Î

for all v in 0, 1 .Ð Ñ

Proof:  see Lebrun (1995, 1996).

The first inequality in (4) is equivalent to v v , for all v in 0, 1 .  The second" "" #Ð Ñ  Ð Ñ Ð Ñ
inequality in (4) is equivalent to F v   F v , for all v in 0, 1 .  The# "# "

" "Ð Ð ÑÑ  Ð Ð ÑÑ Ð Ñ" "
probability distribution of the bid from bidder 2 thus stochastically dominates the
distribution of the bid from bidder 1.
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Let r v  be the ratio , for v in 0, 1 .  From (2), we see that an equivalentÐ Ñ Ð Ó9 "
"

Ð Ñ Ð Ñ
 Ð Ñ
v v

v v
"

"

definition of r v  is r v   .  In the next section, we will need the followingÐ Ñ Ð Ñ œ dln v
dlnv
9$

#

Ð Ñ

properties of r that we derive in Appendix 1 from Lemma 0.

Lemma 6:  Under our assumptions, r is nonincreasing and not larger than /  over 0,$ # Ð

1 , or, equivalently,   0 and   1, for all v in 0, 1 .Ó Ÿ Ÿ Ð Ód ln v dln v
d lnv dlnv
#

#

9 9Ð Ñ Ð Ñ
Ð Ñ

Proof: see Appendix 1.

From Lemma 6 we see that ln  is a concave function of lnv and that the elasticity 9 dln v
dlnv
9Ð Ñ

is not larger than 1.  The ranking between the first and second price auctions we find in
the next section will follow from the properties of  stated in Lemma 6.9

3.Revenue Comparison.
We now state and prove our main result, Theorem 1 below.

Theorem 1:  If , 0,  and 1/2 , then we have R   R , where R  is the# $ # $ #$ Á   0 = 0

seller's expected revenue at the unique Bayesian equilibrium of the first price auction
and R  is his expected revenue at the unique equilibrium in weakly dominant strategies of=

the second price auction when F v v  and F v v ." #Ð Ñ œ Ð Ñ œ# $

The first price and second price auctions are particular examples of auction games
described by Myerson (1981).  From equation (4.12) in Myerson (1981), we see that, at
the equilibrium of such a game with two players, the contribution of a couple of
valuations v , v  to the seller's expected revenue is the winner's "transformedÐ Ñ" #

valuation".  Under our assumptions, bidder 1's transformed valuation is t v   v" " "Ð Ñ œ 
Ð  Ð ÑÑ

Ð Ñ " # # #
Ð  Ñ Ð  Ñ1 F v

F v
1 v
 v

1 v
 v

" "

" "

" #

"
"

#
"d

dv
  v   and similarly bidder 2's is t v   v .  For anœ  Ð Ñ œ 

#

#

$

$# $

interpretation of these transformed valuations in terms of marginal revenues, see Bulow
and Roberts (1989).

  Neglecting ties, which occur with probability zero, the choices of the winner in
the equilibria of the first and second price auctions differ only for the couples of
valuations v , v  such that v   v   v .  For these couples, the first priceÐ Ñ   Ð Ñ" # " # "9
auction chooses bidder 1 as the winner while the second price auction chooses bidder 2.
Consequently,

(5)        R R     t v t v   I v v v  dv  dv ,0 = " " # # " # "! !
" "

" # œ Ö Ð Ñ  Ð Ñ × Ö   Ð Ñ×' ' 9 # $

where I v v v  is equal to one if v v v  and zero otherwise.Ö   Ð Ñ×   Ð Ñ" # " " # "9 9

The difference t v t v  may be positive or negative for v , v  in 0, 1 ." " # # " #
#Ð Ñ  Ð Ñ Ð Ñ Ð Ó

Consider the subsets B and C of 0, 1  defined as follows, B   v , v 0, 1  Ð Ó œ Ö Ð Ñ − Ð Ó ±# #
" #

t v t v 0  and C   v , v 0, 1   t v t v 0 .  The part of" " # # " # " " # #
#Ð Ñ  Ð Ñ Ÿ × œ Ö Ð Ñ − Ð Ó ± Ð Ñ  Ð Ñ   ×

the boundary of the subsets B and C which is above the main diagonal is always the
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graph of a function.  Let  be this function.  It is thus the function defined over 0, 1< Ð Ó
such that

(6)  t v   t v  and v   v ,# " " " " "Ð Ð ÑÑ œ Ð Ñ Ð Ñ  < <

for all v 0, 1 .  Actually,  is equal to h t  where h t  if 1 and" " # ##
"− Ð Ó œ  < $

h t , where v , if 1 (see the properties of the functions t# # 3Ð@Ð Ñß∞Ñ



"Î

œ ± Ð Ñ œ $
$
$

$

$ $Š ‹1
1

in Lemma 7 in Appendix 1).  Notice that h v   0, for all v in the definition domaind
dv #Ð Ñ 

of h .  We thus see that  is differentiable over 0, 1 .  Above the graph of , that is, for# < <Ð Ó
v v , we are in area B and we have t v t v .  Between the graph of  and# " # # " " Ð Ñ Ð Ñ  Ð Ñ< <
the main diagonal, that is, for v v v , we are in area C and we have" # "  Ð Ñ<
t v t v .# # " "Ð Ñ  Ð Ñ

At v 1, the derivative of t  is equal to 2, for all i (see Lemma 7 in Appendix 1).3 3œ
It follows that the function  is tangent to the main diagonal at v 1.  However, at this< " œ
point the derivative of the function  is equal to / 1 (see equation (2)) and9 # $ 
consequently  in a left neighborhood of the largest possible valuation 1.  As we9 <
mentioned in the introduction, the seller's revenue would thus increase if bidder 1 did not
win for high valuations of the bidders as often as he does at the eqilibrium of the first
price auction.  Nevertheless, as we will see below the reverse inequality  holds true9 <
for low valuations of the bidders and the contributions of these low valuations to the
revenues will result in higher revenues at the first price auction than at the second price
auction.

In Appendix 1, we use the properties of the function  proved in Lemma 69
(Section 2) to establish Lemma 11 below which implies that the functions and cross9 <
at most once and are as in Figure 1.

Lemma 11:  There exists w  in 0, 1  such that v   v , for all v in 0, w , and‡ ‡Ð Ñ Ð Ñ   Ð Ñ Ò Ó< 9
< 9Ð Ñ Ÿ Ð Ñ Ò Óv   v , for all v in w , 1 .‡

Proof:  see Appendix 1.

FIGURE  1.#

From Lemma 6 (Section 2),   1 and thus /v is nonincreasing.  Also, fromdln
dlnv
9 Ÿ 9

Lemma 0 (Section 2), v   v .  Consequently, the function v   min v ,9 -Ð Ñ Ÿ Ð Ñ œ Ð# $ # $Î Î

9Ð Ñw
w

‡

‡ v  (see Figure 1) crosses only once and from below the function .  Moreover, if weÑ 9

replace  by  in (5), we will integrate the difference between the transformed valuations9 -
over a smaller area where this difference is nonnegative and over a larger area where it is
nonpositive.  We will thus obtain a lower bound of the difference R R .0 =

  The function  introduced in the previous paragraph is a particular case of a-
function of the form (7) below,
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(7)  v   min v , v ,. 'Ð Ñ œ Ð Ñ# $Î

where 1.  Theorem 1 is thus an immediate consequence of Lemma 12 below.' 

Lemma 12:  Under our assumptions, if , 0,  and 1/2, then# $ # $ #$ Á  

(8)  t v t v I v v v dv dv   0,' '
! !
" "

" " # # " # " " #Ö Ð Ñ  Ð Ñ× Ö   Ð Ñ× . # $

for all functions  of the from (8) where 1.. ' 

Proof:  See Appendix 2.

The expression (7) of the function  is simple enough to enable us to obtain an analytical.
expression of the integral (8).  As we show in Appendix 2, there exist 1  such 0 0" #

that this expression is strictly positive and strictly increasing in  over 1, , strictly' 0Ð Ó"
decreasing over ,  and strictly increasing over , .  We then complete theÒ Ó Ò ∞Ñ0 0 0" # #

proof by showing that the value of the integral (8) at  is strictly positive when ' 0 #$œ #

   1/2.

4.Conclusion.
Among the asymmetric examples we considered, the couples F v   v , F v v ," #Ð Ñ œ Ð Ñ œ# $

with 1    , can be the results of collusion into two cartels by bidders whoseŸ # $
valuations are uniformly and independently distributed.  This uniform distribution can
reflect the lack by bidders of precise information about the other bidders' valuations.  For
these asymmetric examples and for all F v   v , F v v  with ,  0, " #Ð Ñ œ Ð Ñ œ  Á# $ # $ # $
and 1/2, we proved the superiority of the first price auction over the second price#$  
auction.

Using elementary procedures, we were able to show the properties (stated in
Lemma 6, Section 2) which guaranteed this superiority.  Obviously, our results imply
that, for our choices of distributions with F  and F F , 1, the second price" # "œ α α
auction is outperformed by any auction mechanism which shares these properties, that is,
chooses bidder 2 as the winner if and only if v v , where  is a function such that# " Ð Ñ9 9

v v F F v  and  is nonincreasing and not larger than .  We simplyŸ Ð Ñ Ÿ Ð Ñ9 α#
"

"
Ð Ð ÑÑ
Ð Ñ

dlnF v
dlnF v

#

"

9

showed that the first price auction was such a mechanism.

Appendix 1.

Lemma 1:  Under our assumptions, we have liminf    1 1/ .
@p9

Ÿ  Ð Ñ9Ð Ñv
v #
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Proof:  Since all functions involved are differentiable, we see that the function
v v v  is differentiable over 0, 1 .  Computing its derivative, substituting its#Ð  Ð ÑÑ Ð Ó""
value given in (3) to v  and rearranging, we findd

dv""Ð Ñ

   v v v   v    1  1 ,d
dv v

v# # 9Ð  Ð ÑÑ œ  " #"
Ð Ñš Š ‹ ›

for all v in 0, 1 .  Since v v v    0, for all v  0, and v v v   0,Ð Ó Ð  Ð ÑÑ     Ð  Ð ÑÑ œ# #" "" "

for all v  0, we cannot have limsup   0.  Consequently, liminf   œ  Ÿ
@p9 @p!

d
dv  v v v

v v
v#

#

Ð  Ð ÑÑ Ð Ñ" 9"

1 .  || 1
#

Lemma 2:  Under our assumptions, the ratio r v  is differentiable over 0, 1Ð Ñ œ Ð Ó9 "
"

Ð Ñ Ð Ñ
 Ð Ñ
v v

v v
"

"

and its derivative is equal to (A1) below,

(A1)   r v      1  v  1  v ,d 1 1
dv v v v

v vÐ Ñ œ  Ð Ñ  9 "
" $ #

#Ð Ñ Ð Ñ
Ð  Ð ÑÑ

"

"
# š Š ‹ Š ‹ ›9

for all v in 0, 1 .Ð Ó

Proof:  The differentiability follows immediately from the differentiability of all
functions involved.  By computing the derivative of r and substituting the expressions in
(2) and (3) to the derivatives of  and , we find9 ""

d 1
dv v v v v v v

v v v r v     r v            v v   Ð Ñ œ Ð Ñ  Ð Ð Ñ  Ð ÑÑ š Š ‹9 " $ "
# #9 9 "

Ð Ñ Ð Ñ  Ð Ñ
Ð Ñ Ð Ñ Ð Ñ

"
" "

" 9 "

    1   v v   ,1
v v v Ð Ñ ""

#

"
Š ‹ › Ð Ð Ñ  Ð ÑÑ9 "

for all v in 0, 1 .  It suffices then to rearrange to obtain (A1).  ||Ð Ó

Lemma 3:  For every interior maximum v' of r, we have v'   and r v'   / .Ÿ Ð Ñ Ÿ# $
# $
Ð  Ñ

Ð  Ñ
1

1 $ #

Proof:  From equation (2), we see that an alternative definition of r is as follows,

    r v   ,Ð Ñ œ dln v
dlnv
9$

#

Ð Ñ

for all v in 0, 1 .  Suppose v' is an interior maximum of r.  Thus r v'   0 and r Ð Ó Ð Ñ œ Ÿd d
dv dv

0 in a right neighborhood of v' and r  0 in a left neighborhood of v'.  From equationd
dv  

(A1) , we see that v'   v', or, equivalently, ln v'   ln   lnv',9 9 $ $Ð Ñ œ Ð Ñ œ $ # $ #
$ # $ #

$Ð  Ñ Ð  Ñ
Ð  Ñ Ð  Ñ

1 1
1 1

that v   v', or, equivalently, ln v   ln   lnv in a right9 9 $ $Ð Ñ Ÿ Ð ÑÑ Ÿ $ # $ #
$ # $ #

$Ð  Ñ Ð  Ñ
Ð  Ñ Ð  Ñ

1 1
1 1

neighborhood of v' and that v   v', or, equivalently, ln v   ln  9 9 $Ð Ñ   Ð ÑÑ   $ # $ #
$ # $ #

$Ð  Ñ Ð  Ñ
Ð  Ñ Ð  Ñ

1 1
1 1
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$lnv in a left neighborhood of v'.  Consequently, v'   .  The inequality on v'dln
dlnv
9 $

#

$

# Ð Ñ Ÿ

follows from v'   1.  ||9Ð Ñ Ÿ

Lemma 4:  Under our assumptions, r v   / , for all v in 0, 1 .Ð Ñ Ÿ Ð Ó$ #

Proof:  Let  be the supremum of r.  If this supremum is interior, Lemma 3 implies3
Lemma 4.  If the supremum is not interior, it cannot be reached at 1, since from (A1) we
have  r 1   0.  Consequently, we have limsup r v   .  Suppose that   / .d

dv Ð Ñ  Ð Ñ œ 
@p!

3 3 $ #

There exists u  0 such that r u   / .  Then r v   r u , for all v in 0, u . Ð Ñ  Ð Ñ  Ð Ñ Ð Ó$ #
Otherwise there would exist w  u such that r w   r u , and the maximum of r over Ð Ñ  Ð Ñ
Ò Ów, 1  would be interior and its value would be strictly larger than / , a contradiction$ #
with Lemma 3.

From equation (2), we see that  ln v   r u   lnv , for all v in 0, u .d d
dv dv9$ #Ð ÑÑ   Ð Ñ Ð Ñ

Integrating this inequality from v in 0, u  to u, rearranging and dividing by v  giveÐ Ñ $

           ,9 9$ $

#

#

$ $

Ð Ñ Ð Ñu v
u

v
v v<Ð?Ñ

<Ð?Ñ

 

for all v in 0, u .  If we make v in this inequality tend towards zero, the first ratio in theÐ Ñ
left hand side is a constant.  The second ratio tends towards zero and thus also the right
hand side tend towards zero.  However this is impossible since v   v (see (4) in9Ð Ñ  

Lemma 0) and thus   1, for all v.  ||9$

$

Ð Ñv
v  

Lemma 5:   Under our assumptions, limsup r v   / .
@p9

Ð Ñ   $ #

Proof:  Suppose limsup r v / .  Thus there exists v' in 0, 1  and '  /  such that
@p!

Ð Ñ  Ð Ó $ # 3 $ α

r v   ', for all v  0, v' .  From equation (2), we see that  ln v   '  lnv ,Ð Ñ  − Ð Ó Ð Ñ Ÿ3 9 3d d
dv dv

$ #

for all v in 0, v' .  Integrating this inequality from v to v', taking the exponential andÐ Ó
rearranging give

(A2)          v .9 9 $ #3
$ $

#3 $

Ð Ñ Ð Ñ v' v
v' v

'
' Ÿ

From Lemma 1, there exists a sequence of v  0 such that the first factor of the rightp
hand side stays bounded.  Since   ', for this sequence the R.H.S. of the inequality$ #3
(A2) tends towards 0.  However this is impossible since the L.H.S. is a strictly positive
constant.  ||

Lemma 6$ :  Under our assumptions, r is nonincreasing and not larger than /  over 0,$ # Ð

1 , or, equivalently,   0 and   1, for all v in 0, 1 .Ó Ÿ Ÿ Ð Ód ln v dln v
d lnv dlnv
#

#

9 9$ $

# #

Ð Ñ Ð Ñ
Ð Ñ

Proof:  From Lemma 2 we see that r is nonincreasing over 0, 1  if and only if v  Ð Ó Ð Ñ Ÿ9
$ # # $
$ # # $
Ð  Ñ Ð  Ñ

Ð  Ñ Ð  Ñ
1 1

1 1v, for all v in 0, w  with w   .  Since 1  w , this inequality holdsÐ Ó œ  Ð Ñ  9
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true in a neighborhood of w .  Suppose it does not always hold true.  Thus there exists w'

such that ln w' ln w' , that is, ln w'   ln w'   0, where v  9 - 9 - -$ $ $ $Ð Ñ  Ð Ñ Ð Ñ  Ð Ñ  Ð Ñ œ
$ #
$ #

$Ð  Ñ
Ð  Ñ

1
1 v, for all v in 0, 1 .  By continuity there exists w''  w' such that ln w''  Ð Ó  Ð Ñ 9

ln w''   0.  By the mean value theorem, there exists w in w', w''  such that   -$Ð Ñ œ Ð Ñ ÐŠ d
dlnv#

ln v   ln v      0, and thus  9 -$ $ 9 - 9Ð Ñ  Ð ÑÑ œ  ‹ Š ‹
A A

Ð Ð Ñ Ð ÑÑ Ð Ñ


0 ln w' ln w' dln v
lnw'' lnw' dlnv
$ $ $

# # #

Š ‹dln v
dlnv
-$

#

Ð Ñ

A
.

Since ln  is convex in lnv  when ln   ln  and ln  is affine in lnv , we see9 9 - -$ # $ $ $ # 

that ln   ln , over 0, w , and        0, for all v in 0, w .9 -$ # - 9 Ð Ñ   Ð Ñd
dlnv dlnv dlnv

dln v dln v
# # #

$ $Š ‹Ð Ñ Ð Ñ

Consequently, lim  r v   lim   exists and is strictly smaller than   / ,
@p! @p!

Ð Ñ œ œdln v dln v
dlnv dlnv
9 -$ $

# #

Ð Ñ Ð Ñ $ #

a contradiction with Lemma 5.  We have thus proved that    over 0, w  and that r9 -Ÿ Ð Ó

is nonincreasing over 0, 1 .  Moreover, Lemma 4 implies that sup r  / .  ||Ð Ó Ÿ $ #

From Lemma 6, we thus see that ln  is a concave function of lnv.  Lemma 6 also implies9

that is a concave function of v.  In fact, r v /     1 implies that v v is9 # $ 9Ð Ñ œ Ÿ Ð ÑÎdln v
dlnv
9Ð Ñ

nonincreasing.  Moreover,   /   r v  and all factors in the R.H.S. are strictlyd v v
dv v
9 9Ð Ñ Ð Ñœ Ð Ñ$ #

positive nonincreasing functions over 0, 1 .  Another consequence of Lemmas 5 and 6 isÐ Ó
that lim  r v  exists and is equal to / .

@p!
Ð Ñ $ #

Lemma 7:  Let t v,  be equal to v , for all v in 0, 1  and  in 0, .  Then,Ð Ñ  Ð Ó Ð ∞Ñ% %Ð  Ñ1 v
v

%

%% "

t v,  is strictly decreasing in  over 0, 1   0, , and is such that t v,   0,Ð Ñ Ð Ó ‚ Ð ∞Ñ Ð Ñ % % %`
`v

for all v,   in  0, 1   1,     , 1   0, 1  , and t v,  Ð Ñ Ð Ó ‚ Ò ∞Ñ ∪ Ð Ó ‚ Ð Ñ Ð Ñ % %Š ‹ Š Š ‹ ‹1
1 v
 `
 `

"Î
%
%

%

0, for all v,   in 0,   0, 1 .  Moreover, t v,   t v, v  1 v , forÐ Ñ Ð Ñ ‚ Ð Ñ Ð Ñ œ Ð ÑÎ  Î% % %Š ‹1
1 v
 `
 `

"Î
%
%

%
%

all v,  in 0, 1   0, Ð Ñ Ð Ó ‚ Ð ∞Ñ% .

Proof:  From the definition of t v, , we have t v,     0, for v,  inÐ Ñ Ð Ñ œ  Ð Ñ% % %`
`

Ð  Ñ
% %

1 lnv v
v
% %

%# "

Ð Ñ ‚ Ð ∞Ñ Ð Ñ œ Ð Ñ Ð Ó ‚ Ð ∞Ñ0, 1   0, , and t v,   , for v,  in 0, 1   0, .`
`

Ð  Ñ Ð  Ñ
v v

1 v 1% %% %
%

%

%

Lemma 7 follows.  ||

Lemma 8:  There exists v in 0, 1  such that v   v , for all v in 0, v , and v  ~ ~Ð Ñ Ð Ñ   Ð Ó Ð Ñ Ÿ< <# $Î

v , for all v in v, 1 .~# $Î Ò Ñ

Proof:  From the definition of , we obtain 1   1  / 1   2 / 2  1.< d
dv dv dv

dt dt< Ð Ñ œ Ð Ñ Ð Ñ œ œ# "

Consequently, v   v , in an open interval u, 1  with u  1.  We see that Lemma<Ð Ñ  Ð Ñ # $Î

8 will be proved if we prove that there exists one and only one w in 0, 1  such thatÐ Ñ

< < <Ð Ñ œ Ð Ñ  œ w w .  Again from the definition of , we have w     1# $ <
$<

Î  Ð Ñ
Ð Ñ

1 w
w

$

$"

1 w .  Substituting w  by w  in this equation and rearranging, we see that w is Ð Ñ## # $w#"
< Î



11

the solution of  w   .  The L.H.S. is a strictly decreasing function#
$ $

# $ #Ð Î Ñ" Ð  Ñ 
Ð  Ñ œ 1 w 1

1 w 1
$

#

which tends towards  and /  for w tending towards 0 and 1, respectively.  The∞ # $
R.H.S. is a strictly increasing function where it is defined.  It tends towards 1 and ∞

when v tends in 0,  towards 0 and , respectively, and it tends towardsÐ ÑŠ ‹ Š ‹1 1
1 1 

"Î "Î

$ $

# #

∞ Ð Ñ and /  when v tends in , 1  towards in  and 1, respectively.# $ Š ‹ Š ‹1 1
1 1 

"Î "Î

$ $

# #

Consequently, there exists  one and only one such w.  ||%

Lemma 9:  For all v in the interval where  is not larger than v  and in the interior of< # $Î

the interval where  is strictly increasing , when   1 then    0 if  < $& Ð Ñ Ð Ñ
Ð Ñ  d ln v dln v

d lnv dlnv
#

#

< <$ $

# #

     Ÿ œ , when   1 then   0 if     and when   1 then$ # < < $ #
# $ # $
Ð  Ñ Ð Ñ Ð Ñ Ð  Ñ
Ð  Ñ Ð Ñ Ð  Ñ

1 d ln v dln v 1
1 d lnv dlnv 1$ $

#

#

$ $

# #

d ln v
d lnv
#

#

<$

#

Ð Ñ
Ð Ñ   0. 

Proof:  Differentiating t v   t v , and using Lemma 7, we see that  " #
Ð ÑÐ Ñ œ Ð Ð ÑÑ œ< dln v

dlnv
< $

#

$

#

t v 1 v
t v 1 v

"
"

"
"

Ð ÑÐ Î Ñ
Ð ÑÐ Î Ð Ñ Ñ

#

$<
.  By rearranging we obtain

(A3)      1    .dln v
dlnv

1  
1 t v v

< $
# < <

$

#

< $

#

$

Ð Ñ 

 Ð Ð ÑÑ Ð Ñ
œ š ›Ð Ñ "

"

#
"

v
v

By assumption, v v   1.  By dividing this inequality by v v  1 we find< <Ð Ñ Î Ÿ Ð ÑÎ $ #

<Ð Ñv
v

$

#

"

"   1 and the numerator of the fraction in (A3) is nonnegative.  The function  <

and thus the function t   t  (see the definition (6) of  in Section 3 and see Lemma# "‰ œ< <
7) are strictly increasing over a neighborhood of v and thus the denominator is stcirlty
increasing around v.  Consequently  will be strictly increasing over adln v

dlnv
<$

#

Ð Ñ

neighborhood of v if    0.d
dv v

v<Ð Ñ$

#

"

"  

When 1, the inequality    0 is immediate.  The rest of Lemma 9$ œ  d
dv v

v<Ð Ñ$

#

"

"

then follows by computing the derivative in this inequality and by rearranging.  ||

Lemma 10:  If   1 or if   1   then   0, for all v in the interval$ # $Ÿ Ÿ   d ln v
d lnv
#

#

<$

#

Ð Ñ
Ð Ñ

where  is nondecreasing and not larger than v .< # $Î

Proof:  When 1, Lemma 10 restates Lemma 9.  Suppose 1.  Then   $ $œ  œ$ #
# $ #

$Ð  Ñ
Ð  Ñ

1
1

1
1 dlnv

dln v


Ð Ñ

@œ"

#
$ #

$ <    , since .  From (A3),   / .  It suffices then to apply œ  œα # $ $ #Š ‹$

#

Lemma 9 to prove Lemma 10 in this case.  If   1   then   0.  However# $Ÿ  Ÿ$ #
# $
Ð  Ñ
Ð  Ñ

1
1

dln v
dlnv
<$

#

Ð Ñ   0, for all v in 0, 1 , and Lemma 9 again implies Lemma 10.  ||  Ð Ó

Lemma 11:  There exists w  in 0, 1  such that v   v , for all v in 0, w , and‡ ‡Ð Ñ Ð Ñ   Ð Ñ Ò Ó< 9
< 9Ð Ñ Ÿ Ð Ñ Ò Óv   v , for all v in w , 1 .‡
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Proof:  We know that    over 1 , 1 , for a 0.  From Lemma 8 and the9 < % % Ð  Ñ 
second inequality in (4),   over 0, ' , for a ' 0.  There thus exists at least one9 < % % Ð Ñ 
point in 0, 1  where  is equal to .  If 1 or if 1 , Lemma 10 implies thatÐ Ñ Ÿ Ÿ 9 < $ # $
ln , over the interval where it is nondecreasing,  is a convex function of lnv.  Lemma 11<
then follows from the concavity of ln  with respect to lnv (see Lemma 6) and the fact9
that ln  is strictly increasing.9

Let  and  be strictly larger than 1.  Let w  be the largest w in 0, 1  such that# $ ‡ Ð Ñ
9 < < <Ð Ñ œ Ð Ñw   w .  From Lemma 7 and the definition of ,  is striclty increasing.

If   , then   , for all v in 0, w .  Otherwise,Š ‹dln v 1 dln v 1
dlnv 1 dlnv 1
< $ # < $ #

# $ # $

$ $

# #

Ð Ñ Ð  Ñ Ð Ñ Ð  Ñ

A Ð  Ñ Ð  Ñ
‡

‡
Ÿ Ÿ Ð Ñ

from the mean value theorem there would exist u in 0, 1  such that   0Ð Ñ Š ‹d ln v
d lnv
#

#

<$

#

Ð Ñ
Ð Ñ ?

and   , which would contradict Lemma 9.  If   ,Š ‹ Š ‹dln v 1 dln v 1
dlnv 1 dlnv 1
< $ # < $ #

# $ # $

$ $

# #

Ð Ñ Ð  Ñ Ð Ñ Ð  Ñ

? AÐ  Ñ Ð  Ñ  
‡

Lemma 9 similarly implies that   , for all v in 0, w .  Thus, indln v dln v
dlnv dlnv
< <$ $

# #

Ð Ñ Ð Ñ

A

‡Ÿ Ð ÑŠ ‹
‡

general,   max  ,  , for all v in 0, w .  From the definitiondln v dln v 1
dlnv dlnv 1
< < $ #

# $

$ $

# #

Ð Ñ Ð Ñ Ð  Ñ

A Ð  Ñ
‡Ÿ Ð Ñš Š ‹ ›

‡

of w , it follows that   r w .  Since r is nonincreasing and‡ ‡Ð Ñ Ð Ñ

A A
Š ‹ Š ‹dln v dln v

dlnv dlnv
< 9$ $

# #
‡ ‡
Ÿ Ð Ñ œ

r 1 1, we have r w    1.  However,    1 and thus max  ,Ð Ñ œ Ð Ñ   Ÿ‡ Ð  Ñ Ð Ñ
Ð  Ñ A

$ # <
# $

1 dln v
1 dlnvš Š ‹$

#
‡

$ # <
# $
Ð  Ñ Ð Ñ
Ð  Ñ

‡ ‡1 dln v
1 dlnv   r w .  Again r is nonincreasing and we find that   r w   r v› Ÿ Ð Ñ Ÿ Ð Ñ Ÿ Ð Ñ

$

#

œ Ð Ñ Ð Ñ Ÿ Ð Ñ Ð Ñ , for all v in 0, w .  Consequently, ln v   ln v , for all v in 0, w ,dln v
dlnv
9 $ $
$

#

Ð Ñ ‡ ‡< 9

and Lemma 11 is proved.  ||

Appendix 2.

Proof of Lemma 12:  We first change the variables of integration in ' '
! !
" "

Ö Ð Ñ  Ð Ñ× Ö   Ð Ñ× Ð Ñ   t v t v  I v v v  dv dv  from v , v , with v 0 and  v v  to" " # # " # " " # " # "" #. # $

Ð Ñ œ Ð Î Ñ Ð Ñ œ Ðv ,   v , v v .  The inverse of this change is simply given by v , v   v ," " # " " # "0
0 0v , for v 0 and 1.  Through this change of variables, the integral in (8)" "Ñ   
becomes,

(A4) t v t v  v  v dv  d ,' '
" !

2Ð Ñ
" " # " " ""

" " `Ð Ñ
`Ð Ñ

' 0 # $
0Ö Ð Ñ  Ð Ñ× Ð Ñ ± ±0 # $ 0 0v , v

v , 
" #

"

where  is the absolute value of the determinant of the Jacobian of the change± ±`Ð Ñ
`Ð Ñ

v , v
v , 
" #

" 0

of variables and h  is such that h   h , that is,Ð Ñ Ð Ñ œ Ð Ñ0 0 0 0 # $Î

(A5)     h   .Ð Ñ œ0 0
$

# $

The absolute value of the determinant  is equal to  v .  By1 0
v± ± œ`Ð Ñ

`Ð Ñ
"

"
v , v
v , 
" #

" 0 º º0

substituting its value to this determinant and their values to t v  and t v , the inner" " # "Ð Ñ Ð Ñ0
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integral in (A36) becomes   1 v 1  v   1 v 1  v  '
!
2Ð Ñ

" "
"

" "
0 # #$ $ $ $Ö ÐÐ  Ñ  Ñ  ÐÐ  Ñ  Ñ ×# $0 $ 0 #

dv , or, equivalently,  1 v  v   1 v  v   dv ." "!
2Ð Ñ " "

" " "
 

"
' 0 $ $ $ $# $ # $ #Ð  Ñ   Ð  Ñ # $0 $0 $ #0 #

It is thus equal to the difference between the values at h  and 0 of the function Ð Ñ Ö0
Ð  Ñ Ð  Ñ

     " " " "
 "  " ""# $0 $ #0

# $ $ # $ #
# $ # $ #$0 $ #1 1

1 1 1 1
$ $$" "

 v    v    v   v  .  Using the value of h   × Ð Ñ0

given in (A5), we then find the following expression for the value of the inner integral in
(A4),

(A6)       Ð  Ñ
  

" "# $
# $ $

$ $$1
1 10 0

Ð  "Ñ Ð "Ñ
 

# $ $ $ $
# $ # $

               . Ð  Ñ
  

$ #
# $ #

$ #1
1 10 0

Ð  "Ñ Ð "Ñ
 

# $ $ # $
# $ # $

The exponent 1  of  in the first term of the expression (A6) is$ 0  Ð   Ñ


# $ $
# $

1

equal to .  The exponent 1  of  in the second term is equal to2 2 1#$ $ #
# $ # $

$ $ 
 

Ð  Ñ$ 0 
#$ $ # #$ $
# $ # $ # $

# $ $  
  

Ð   Ñ2 21.  The exponent  of  in the third term is equal to .  The$ 0

exponent of  in the last term is simply equal to .  By dividing each term by , we0 0#$ $
# $



#$ $
# $



see that the expression in (A6) is equal to (A7) below,

(A7)               .0 0 0 0
#$ $ #$ $ # #$
# $ # $ # $
  
   ŸÐ  Ñ Ð  Ñ

     
"# $ $ #

# $ $ # $ #
$ #1 1

1 1 1 1  

The first and third terms of the expression between braces in (A7) above, if they are
grouped together, are equal to    1   1  .  The second and1

1# $ 
"0 # $0 $ #

#$
# $ Ö Ð  Ñ  Ð  Ñ ×

fourth terms, grouped together, are equal to    1   1  . Ö Ð  Ñ  Ð  Ñ ×1
1 1Ð  ÑÐ  Ñ

"
# $ # $0 $ #

Consequently, we see that (A7) and thus the inner integral in (A4) are equal to (A8)
below,

(A8)  1 1 1  1 1 .0
# $ # $

#$ $
# $ #$

# $





Ð   ÑÐ  ÑÐ  Ñ

"
1 1 1 ÖÐ  ÑÐ  Ñ  Ð   Ñ× ÖÐ  Ñ  Ð  Ñ ×# $ 0 # $ # $0 $ #

We now study the sign of the expression (A8), that is, of the inner integral in
(A4).  We notice that the first factor in (A8) is strictly positive in the range 1.  The0  

second factor is equal to zero at , is strictly positive for all  smaller thanŠ ‹Ð  ÑÐ  Ñ
Ð   Ñ
# $
# $

1 1
1

$ #
#$


0

this value and is strictly negative for all other .  The third factor is also strictly positive,0

then strictly negative, but the change of sign occurs at the root .  Consequently, weÐ  Ñ
Ð  Ñ
# $
$ #

1
1

see that the set of roots of (A8) in the range 1, is equal to0 

      ,     ,  .Ö × œ Ö ×0 0" #
Ð  ÑÐ  Ñ Ð  Ñ
Ð   Ñ Ð  ÑŠ ‹# $ # $
# $ $ #

1 1 1
1 1

$ #
#$
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Assume that  denotes the smallest of the roots, that is,   .  Then, the expression0 0 0" " #Ÿ
(A8) is strictly positive over 1,  and , , and is strictly negative over , .Ò Ñ Ð ∞Ñ Ð Ñ0 0 0 0" # " #

Thus the (outer) integral (A4) considered as a function of 1, is strictly positive and0 
strictly increasing over 1, , then is strictly decreasing over ,  and is againÐ Ñ Ð Ñ0 0 0" " #

strictly increasing over , .  We will thus have proved Lemma 12 if we prove thatÐ ∞Ñ0#
the integral (A4) is strictly positive at .0#

Suppose  first that the maximal root  is equal to the root  of the third'
#

Ð  Ñ
Ð  Ñ0 # $
$ #

1
1

factor in (A8).  In this case, the third factor in (A8) is nonnegative over the interval 0,Ò

0 0#Ó.  Consider the function f defined as the ratio of this factor and , that is,
#$ $
# $



(A9)              f   ,Ð Ñ œ0 Ð  Ñ Ð  Ñ# $0 $ #

0

1 1"




#$ $
# $

or, equivalently, f   1 1 , for all 1.  Over theÐ Ñ œ Ð  Ñ  Ð  Ñ 0 # $0 $ #0 0
#$ $ #$ $
$ # $ #
 
 "

interval 0, , the function f is nonnegative.  Moreover, if we take the derivative of f, weÒ Ó0#
find

     f    1 1 1 .d
d   0 $ # $ #

#$ $ #$ $Ð Ñ œ Ð  Ñ   Ð  Ñ0 0 # $ $ # 0
#$ $
$ #

 #  

 š Š ‹ ›
Since 1, the factor between braces in the R.H.S. of the equality above is strictly0 

smaller than 1   0, and the derivative of f is strictly negativeÐ  Ñ  Ð  Ñ œ$ # $ #Š ‹#$ $
$ #

 

over the domain 1, and thus f is strictly decreasing over this domain.  Consequently,0 

if we show that the integral   1 1 1  d  is strictly'
"

#0#
Ð  Ñ

 0 # $ 0 # $ 0
#$ $
# $ # $

#$

ÖÐ  ÑÐ  Ñ  Ð   Ñ×

positive, we will be able to obtain   1 1 1'
"
0#


 0 # $ 0 # $

#$ $ #$
# $ # $ÖÐ  ÑÐ  Ñ  Ð   Ñ×

ÖÐ  Ñ  Ð  Ñ × # $0 $ # 01 1  d   0 and thus to prove Lemma 12, by applying Lemma 13"

(Appendix 3) to f defined in (A9) and g defined in (A10) below,

(A10)   g    1 1 1 ,Ð Ñ œ ÖÐ  ÑÐ  Ñ  Ð   Ñ×0 0 # $ 0 # $# Ð  Ñ
 

#$ $
# $ # $

#$

for all 1.0 

In this paragraph, we prove that the integral of g defined in (A10) from 1 to  is0#
strictly positive.  We actually show that  g  d   0, for all 1.  The function g'

"
0

Ð Ñ  0 0 0

can also be written as

    1 1  1 ,Ð  ÑÐ  Ñ  Ð   Ñ# $ 0 # $ 0
$ # # #

 
#$ $ #$ $
# $ # $

and the integral  g  d  is thus equal to (A11) below'
"
0

Ð Ñ0 0

(A11)    g  d         ' š ›"
Ð  ÑÐ  ÑÐ  Ñ Ð   ÑÐ  Ñ

   

0 # $ # $ # $ # $
#$ # $ #$ # $Ð Ñ œ 0 0 0 01 1 1

3 2
$   #  

 
#$ # $ #$ # $
# $ # $
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                                                                        . š ›Ð  ÑÐ  ÑÐ  Ñ Ð   ÑÐ  Ñ
   

# $ # $ # $ # $
#$ # $ #$ # $

1 1 1
3 2

The function g (see (A10)) is strictly positive for  strictly smaller than 0 Š ‹Ð  ÑÐ  Ñ
Ð   Ñ
# $
# $

1 1
1

$ #
#$


and strictly negative for  strictly larger.  Thus the integral (A11) is strictly increasing0

and strictly positive before  and strictly decreasing after.  As aŠ ‹Ð  ÑÐ  Ñ
Ð   Ñ
# $
# $

1 1
1

$ #
#$


consequence, we will have proved  g  d   0, for all 1, if we prove that the'
"
0

Ð Ñ  0 0 0

limit of this integral for    is nonnegative.  If  tends towards , the first0 0p ∞ ∞
difference between braces in the R.H.S. of (A11) tends towards zero.  In fact,  and# $
thus the exponents of  in each term of this difference are strictly negative.0

Consequently, the limit of the integral  g  d  for , is equal to the opposite of'
"
0

Ð Ñ p ∞0 0 0

the difference in the R.H.S. of (A11).  By computing this difference, we find

(A12)     lim    g  d     .
0

0 0
p∞

Ð Ñ œ'
"

Ð  Ñ Ð  Ñ
Ð   ÑÐ   Ñ

0 $ # #$ #$
#$ # $ #$ # $

2 1
3 2

Since  and 1 2, we see from (A12) that the limit of  g  d  is nonnegative.$ # #$ 0 0   Î Ð Ñ'
"
0

We have thus proved that  g  d   0, for all 1, and from the two previous'
"
0

Ð Ñ  0 0 0

paragraphs we have also proved Lemma 12 in the case   .0#
Ð  Ñ
Ð  Ñœ # $
$ #

1
1

Assume now that the maximal root  is equal to the root  of the0#
Ð  ÑÐ  Ñ
Ð   ÑŠ ‹# $
# $

1 1
1

$ #
#$


second factor of (A8).  In this case, the second factor of (A8) is strictly positive over 0,Ò
0 0#Ñ.  Since the exponent of  in this factor is strictly negative, this factor is a strictly
decreasing function of .  Consequently, we will have proved Lemma 12 in this case if0

we prove that g  d   0 where g is defined in (A13) below,~ ~'
"
0# Ð Ñ 0 0

(A13)  g    1 1 ,~Ð Ñ œ ÖÐ  Ñ  Ð  Ñ ×0 0 # $0 $ #
#$ $
# $

 "

for all 1.  In fact, it will suffice to apply Lemma 13 (Appendix 3) to g and to f~ ~
0 

defined below,

      f   1 1 1 ,~
Ð Ñ œ Ð  ÑÐ  Ñ  Ð   Ñ0 # $ 0 # $

#$
# $

for all 1.0 

In this last paragraph, we prove that g  d   0, where g is defined in~ ~'
"
0# Ð Ñ 0 0

(A13).  We actually prove that g  d   0, for all 1.  We can rewrite the~'
"
0
Ð Ñ  0 0 0

equality (A13) as follows,

      g   1 1 ,~Ð Ñ œ Ð  Ñ  Ð  Ñ0 # $0 $ #0
#$ $ #$ $
# $ # $
 
 "
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for all 1.  Consequently, the integral of g from 1 to  is given by (A14) below,~0 0

(A14) g  d   .~' š ›"
0
Ð Ñ œ Ð  Ñ  Ð  Ñ0 0 # $ 0 # $ 0

#$ $ #$ #
# $ # $
 
 

From (A14), we see that g is strictly positive over 1,  and is strictly negative over~ Ò ÑÐ  Ñ
Ð  Ñ
# $
$ #

1
1

Ð ∞Ñ Ð ÑÐ  Ñ
Ð  Ñ "
# $
$ #

01
1 , .  Thus, the integral g  d  is strictly positive and strictly increasing~' 0 0

over 1,  and strictly decreasing over , .  If we prove that    limÒ Ñ Ð ∞Ñ
p ∞

Ð  Ñ Ð  Ñ
Ð  Ñ Ð  Ñ
# $ # $
$ # $ #

1 1
1 1 0' '

" "
0 0g  d   0, we will thus have proved g  d   0, for all 1.  Since the~ ~Ð Ñ   Ð Ñ  0 0 0 0 0

exponents of  are strictly negative, each term in the R.H.S. of (A14) tends towards 0 as 0 0
tends towards .  Thus, we have∞

      lim  g  d   0,~
0

0 0
p∞

Ð Ñ œ'
"
0

and we have proved g  d   0, for all 1, and Lemma 12.  ||~'
"
0
Ð Ñ  0 0 0

Appendix 3.

Lemma 13:  Let a and b be two real numbers such that a b.  Let f and g be two
continuous functions defined over a, b .  Suppose that f is nonincreasing and strictlyÒ Ó
positive over a, b .  Suppose also that there exists c in a, b  such that g is nonnegativeÐ Ñ Ð Ñ

over a, c  and nonpositive over c, b .  If  g x  dx  0, thenÒ Ó Ò Ó Ð Ñ '
+
,

         f x g x  dx  0.'
+
,
Ð Ñ Ð Ñ 

Proof:  Over a, c , g is nonnegative and f is not smaller than f c .  Consequently, weÒ Ó Ð Ñ
have

            f x g x  dx  f c   g x  dx.' '
+ +
- -

Ð Ñ Ð Ñ   Ð Ñ Ð Ñ

Over c, b , g is nonpositive and f is not larger than f c .  Thus we haveÒ Ó Ð Ñ

           f x g x  dx  f c   g x  dx.' '
- -
, ,

Ð Ñ Ð Ñ   Ð Ñ Ð Ñ

By adding the two previous inequalities, we find

(A15)           f x g x  dx  f c   g x  dx.' '
+ +
, ,

Ð Ñ Ð Ñ   Ð Ñ Ð Ñ

Suppose  g x  dx  0.  Since f is strictly positive over a, b , we have f c 0.'
+
,

Ð Ñ  Ð Ñ Ð Ñ 

From (A15), we thus see that  f x g x  dx  0 and Lemma 13 is proved.  ||'
+
,

Ð Ñ Ð Ñ 

Footnotes.
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1.  See a more detailed definition of strategies in Lebrun (1996).

2.  Figure 1 was drawn assuming that   1  .# $œ 

3.  The statement given here is obviously equivalent to the statement given in
Section 2.

4.  Moreover, this w belongs to 0, .Ð ÑŠ ‹1
1

"Î

$

#

5.  Since both intervals are intervals with nonempty interiors and with upper
extremities equal to 1, the two requirements define an interval with the same properties.

6.  Either of the analytical expressions for the roots of (A8) in the range 1 can0 
give the maximal root  for some values of  and .0 # $#
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