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Abstract

Under some assumptions, the introduction of at least a small degree of

anonymous “pay-your-bid” in the payment rule of the second-price auction

behooves any risk-neutral seller who, while possibly efficiency minded, cares

about revenues. In fact, it results in an increase in revenues and a rela-

tively insignificant decrease in efficiency. This can be achieved by adding

to the winner’s payment a uniform proportion of his own bid, as in Güth

and van Damme’s auction, or by having bidders receive a uniform propor-

tion of the losing bid, as in Goeree and Offerman’s Amsterdam auction, or

even by selling uniform toeholds to the bidders prior to the auction. The

equilibria of Güth and van Damme’s auction with n bidders and of the other

auctions with two bidders are identical to equilibria of first-price auctions

with transformed value distributions and converge towards truth-bidding if

the pay-your-bid component vanishes. With two bidders and under power

relation between the bidders’ value cumulative or decumulative functions,

we obtain explicit expressions for the different first-order effects of this com-

ponent. Keywords: revenues; efficiency; second-price auction; first-price

auction; English auction; 2-k-price auction; Amsterdam auction; toeholds;

electronic auction; bidder heterogeneity. J.E.L. Classification code: D44.
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1. Introduction

In the independent private values model with risk-neutral bidders and

when a single indivisible item is for sale, the Vickrey-Clarke-Groves mecha-

nism (see, for example, Milgrom 2004 and Krishna 2009) reduces to a second-

price auction, or SPA. Truthful bidding is its only Bayesian-Nash equilibrium

in weakly dominant strategies and produces an efficient outcome: the item

goes to the highest-value bidder. Truthful bidding above the reserve price is

the unique unrestricted Bayesian-Nash equilibrium when the reserve price is

binding and there are at least three bidders (see Remark 3.2, page 1488, in

Maskin and Riley 1984 and Blume and Heidhues 2004). Furthermore, the

rules of the SPA are simple and anonymous.

Increasing auction revenues is obviously a major concern to private sellers

(as well as decreasing costs to private buyers, for procurement auctions), but

also to governments seeking to rely less on taxes1. Efficiency is important to

governments selling public assets and, because it may increase participation,

even to some private sellers2.

Although the SPA with an optimally chosen reserve price may maximize

the seller’s expected revenues when the bidders are ex ante homogeneous3,

this is no longer true if there are “strong” and “weak” bidders, as is the

case of many theoretical models and empirical studies4. From Myerson

1For example, although given a low priority, it was alreday one of the stated goals of

the first spectrum auctions. See McMillan (1994) and McAfee and McMillan (1996).
2For example, Cramton (1998) writes: “The conflict between revenue maximization and

efficiency is further reduced when one considers the desirable effects an efficient auction

has on participation. Potential bidders are attracted to the auction based on the expected

gains from participation. An efficient auction maximizes the gains from trade, which is

the pie to be divided between seller and buyer.” As McAfee (2002, p.117) writes about the

spectrum auctions, efficiency is important to bidders because it “eliminates unnecessary

risk and minimizes the amount of resale that will occur after the auction.”
3It does maximize expected revenues if the common value distribution is “regular.”

See Myerson (1981).
4For example, the empirical studies of Branmann and Froeb (2000), Krasnokutskaya

(2011), and Athey, Levin and Seira (2011) are consistent with such heterogeneous bidders.

Among initially homogeneous bidders, efficient collusion or mergers give rise to effective
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(1981), the optimal auction allocates the item to the bidder with the highest

“virtual value,” computed from his actual value and its probability distrib-

ution. When a strong bidder’s value distribution hazard-rate dominates a

weak bidder’s, his virtual value is smaller than the weak bidder’s with the

same actual value and the optimal auction must then be biased towards the

weak bidder. Thus, implementing the optimal auction requires complicated

and case-specific payment rules5,6.

With two bidders, one strong and one weak, we show that introducing a

small and non-discriminatory pay-your-bid element to the payment rule of

the SPA has a strictly positive first-order effect on expected revenues and

only a second-order effect on expected total surplus. Thus, even a risk-

neutral seller who cares about surplus will want to modify the rules in this

way as long as he also cares about revenues7. The intuition for our result is

simple: in the modified auction, as in the first-price auction or FPA, the weak

bidder bids more aggressively than the strong bidder. Because, contrary to

bidders with “power related” value cumulative distributions functions, that is, fixed powers

of the same cumulative function. Many important references on the implementation of

efficient collusion can be found in Marshall and Marx (2012). See also the paper by

Biran and Forges (2011). The effects of efficient mergers have been simulated in Dalkir,

Logan, and Masson (2000), Tschantz, Crooke, and Froeb (2000), and Branmann and Froeb

(2000). Pesendorfer (2000) and Baldwin, Marshall, and Richard (1997) have detected

efficient collusion in actual auctions. Power related cumulative distributions follow from

natural axioms in Whaerer and Perry (2003) and Piccione and Tan (1996).
5If discrimination among bidders is impossible, for example because illegal, even more

complexity may be necessary. For example, an obvious nondiscriminatory optimal mech-

anism would: 1. ask the bidders to reveal their identities (their value distributions) and

their common knowledge (the set of the value distributions of all bidders); 2. cancel the

sale if their answers are inconsistent; and 3. otherwise, implement the optimal discrimi-

natory mechanism through a direct mechanism. For the implementation of the optimal

mechanism through a particular class of anonymous sealed-bid auctions, see Deb and Pai

(2014).
6Nevertheless, Lebrun (2012) shows that, in a restricted n-bidder model and in the

general 2-bidder model, the standard English auction if followed by resale implements the

mechanism that is optimal among all mechanisms selling with certainty. Wilson (1987)

advocates the study of the possible interim efficiency, of which optimality is a special case,

of simple and familiar trading rules “over a wide class of environments.”
7 I owe this observation to Brent Hickman.
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the FPA, the equilibrium allocation changes only when the weak bidder has

almost the same value as, hence a larger virtual value than, the strong bid-

der’s, the revenues increase more than the surplus decreases. Obviously, the

optimal “dosage” of pay-your-bid depends on the particular value distribu-

tions and the seller’s utility. For example, from Maskin and Riley (1985),

there exist power related distributions for which the seller prefers the SPA

to the FPA, as this latter auction brings less revenues. However, the direc-

tion for improvement is unambiguous: the addition of any sufficiently small

pay-your-bid element will make the seller better off.

Some pay-your-bid feature can be introduced by requiring the winning

bidder to pay a proportion of his bid, as in Güth and van Damme (1988)’s

auction; or by paying bidders a proportion of the difference between the

losing bid and the reserve price, as in Goeree and Offerman (2004)’s second-

price Amsterdam auction or AA; or even by first selling at the reserve price

“toeholds,” that is, shares of ownership in the item for sale, and then running

the SPA. Indeed, in all cases, the net payment when winning—the difference

between the payments when winning and when losing—includes a proportion

of own bid. Furthermore, we establish formal one-to-one relations among the

equilibria of these auctions and the FPA. For any two auction procedures,

the equilibrium of one is identical to the equilibrium of the other provided

the value distributions are changed according to a transformation that we

explicitly describe. While general explicit expressions are very rare in the

literature on pay-your-bid auctions with heterogeneous bidders, we obtain

such expressions for the first-order effects of the pay-your-bid rule on the

equilibrium strategies when there are two bidders and their value cumulative

or decumulative distribution functions are power related.

Although we assume the bidders’ values are distributed over a common

interval, our results are robust to small (probability-wise) heterogenous per-

turbations of the value supports8.

8This is a consequence of the continuity of the equilibrium of the FPA (Lebrun 2002),

4



Various conditions under which the revenues from the FPA and SPA can

be ranked (in either way) are investigated in Maskin and Riley (2000), Cheng

(2006), Kirkegaard (2012), and Kaplan and Zamir (2012). Discriminatory

ways to increase revenues have been studied empirically and theoretically.

Kirkegaard and Overgaard (2008) and Mares and Swinkels (2011) are recent

examples of theoretical contributions.

When  is an integer, it is customary (see, for example, Monderer and

Tennenholtz 2000 and 2004) to refer to the auction where the price is the kth

highest bid as the k-price auction. For  between zero and one, Cramton et

al. (1987) call k+1-price auction the auction used to dissolve a partnership

among the bidders and where the price is the weighted average of the highest

and second highest bids with respective weights 1−  and . Thus, Wasser

(2013) calls 2—k-price auction the similar auction where the weights are re-

versed. As we use the notation  for the weight given to the highest bid,

we also call Güth and van Damme (1986)’s auction the 2—k-price auction or

2—k-PA9. However, it should be emphasized that, contrary to Cramton et

al. (1987) and Wasser (2013), our 2—k-PA is a standard “unilateral” auction,

that is, no bidder taking part in it owns any share of the item for sale.

Links similar to our links among the equilibria of FPA’s, 2—k-PA’s, and

AA’s were observed by: Bulow, Huang, and Klemperer (1999, page 445) be-

tween FPA’s and SPA’s with common value, identically and independently

distributed signals, and possibly asymmetric toeholds; and by de Frutos

(2000) and Wasser (2013) among FPA’s and “bilateral” auctions.

From Lizzeri and Persico (2000), the equilibrium of the 2—k-PA with

heterogenous bidders and interdependent values exists and is unique if the

reserve price is binding. In the present paper, we allow a nonbinding reserve

price.

Auctions where (typically, relatively small) premiums are handed to some

to which our auctions are related.
9Although they do not coin a name for their auction, Güth and van Damme (1986)

refer to its payment rule as the “-pricing rule” where  is our 1− .
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bidders have existed in Europe since the Middle Ages. Bochove, Boerner,

and Quint (2013) find that the data from premium auctions of financial

securities in eighteenth-century Amsterdam is consistent with a common-

value model with independent private signals. Tobay, premium auctions are

used to allocate real estate and second-hand machinery, for example. In

the words of Goeree and Offerman (2004), the AA is a “stylized version

that captures the essential features shared by all premium auctions.” With

  2 bidders, it proceeds, similarly to Klemperer (2002)’s Anglo-Dutch

auction, as an ascending-price auction up to the last stage, when a sealed-bid

premium auction takes place between the two remaining bidders. Through

experiments, Goeree and Offerman (2004) study the revenue and efficiency

performances of the AA relative to the English and optimal auctions when

bidders are asymmetric. For example, in the strongly asymmetric case, with

one strong bidder and − 1 “very weak” bidders, with no chance of winning
the item, average revenues and percentage efficiency are, respectively, 66

and 87.7% for the AA and 44.1 and 96.7% for the English auction10. By

solving the theoretical model pertaining to this case, the authors show that

the competition for the premium among the very weak bidders enhances

revenues by creating an endogeneous “reserve price” for the strong bidder.

In our present paper, the premiums increase revenues through a different

channel, one that is present even with only two bidders, each with some

chance of winning. This channel is the bias of the ensuing equilibrium

allocation towards the weaker bidder.

In a symmetric model with interdependent values and independent sig-

nals, Hu, Offerman, and Zou (2011) extend the rules of the AA to those

of the “English premium auction” and prove that it brings more revenues

than the standard English auction if the bidders are risk loving. This re-

sult is consistent with the experimental study in Brunner, Hu, and Oechssler

10The premiums in these experiments are 30%. Interestingly, the average revenues from

the “first-price AA,” where the last stage is a first-price auction with premium, are 60.1.
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(2014).

We observe that the AA with two bidders is equivalent to an auction

where bidders receive “price-proportional benefits” because they had previ-

ously bought small shares of the item being auctioned. Thus, using pre-

miums may be a convenient way to reach the same outcome as an auction

with toeholds when actual toeholds are difficult or impossible to implement

(for example, because of legal costs). In a common-value symmetric model,

Bulow et al. (1999) find that the seller prefers symmetric bidder toeholds

to asymmetric ones. Here, the seller prefers symmetric toeholds to no toe-

holds.

Because of proxy bidding, the “electronic auctions,” on Web-sites such as

eBay, Amazon, and Yahoo!, are similar to the SPA. As Hickman (2010) ob-

serves, the raising of the price by increment introduces a small pay-your-bid

element: the price is the sum of the second-highest bid and the bid incre-

ment unless this amount is above the highest bid, in which case the price

is the highest bid. When the bidders are homogeneous, Hickman (2010)

characterizes the equilibrium and shows that, although significantly different

from truth-bidding, it is still increasing and symmetric. Therefore, expected

revenues and total surplus are the same as in the SPA. Unfortunately, as

the weight (zero or one) given to the own bid in the computation of the price

changes with the bids, solving for the equilibrium when bidders are hetero-

geneous is likely to be even more complicated than in the 2—k-PA, where this

weight is fixed. We conjecture that, with strong and weak bidders, the in-

crement rule too increases revenues without significantly affecting efficiency.

We leave for future work the formal examination of this conjecture.

In Section 2, we analyze the 2—k-PA with  bidders and, using methods

from Lebrun (1999), prove that its equilibrium for given value distributions

is identical to the equilibrium of the FPA where the value distributions have

been raised to the exponent 1. This link between the two auction pro-

cedures allows us to import results from the literature on the FPA with
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heterogeneous bidders. If there exists a weakest bidder, we prove that as 

tends towards zero the bidding functions tend towards the identity function

and we obtain bounds on the rates of convergence. Because of the known

complexity of the FPA hence the 2—k-PA with heterogeneous bidders, we

have to assume two bidders and power related cumulative distributions in

order to obtain explicit expressions for the rates of change of the revenues

and surplus.

We turn to the AA, with two bidders, in Section 3 and prove that its

equilibrium is the equilibrium of the 2—k-PA where the value distributions

have been “reflected” through the middle of the value support. Thanks

to this new link, our results about the 2—k-PA, such as the convergence of

the equilibrium towards truth-bidding when  tends towards zero as well as

explicit expressions for the first-order effects, translate to the AA. Thus,

the equilibrium converges towards truth-bidding if  tends towards zero and

explicit expressions for the first-order effects can be obtained if the value de-

cumulative functions are power related. Section 4 is the conclusion. Proofs

similar to proofs already included in the text or to proofs of existing results,

as well as proofs of secondary or technical results, have been relegated to the

appendices.

2. The 2—k-Price Auction

Bidders 1  , with  ≥ 2, participate in the auction. Their values are
randomly and independently drawn from the interval [ ], with 0 ≤  

, according to the probability distributions 1  . We use the same

notation for a probability distribution and its (continuous from the right)

cumulative function. We assume that, for all 1 ≤  ≤ ,  is continuous over

R, continuously differentiable over [ ] with a strictly positive derivative 
over ( ], twice-continuously differentiable over ( ], and such that 





()

is bounded from above.
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As  is atomless, the logarithm ln () tends towards −∞ if  ap-

proaches  and hence the reverse hazard rate 

ln () =

()
()

must take

on unbounded positive values and its derivative 




() unbounded negative

values. Our assumption above simply means that 




() never takes on un-

bounded positive values. Obviously, a smooth  that is log-concave in some

interval ( + ), with   0, satisfies our assumptions as then 




() ≤ 0

over this interval. From the technical Lemma A1 in Appendix 1, we have

lim→


()= +∞.

The concept of equilibrium we use throughout is Bayesian Nash in weakly

undominated strategies.

We will make frequent use of the notations below for the reverse hazard

rate, hazard rate, and virtual value of bidder  with actual value :

 () =
 ()

 ()
;

 () =
 ()

1−  ()
;

 () =  −  ()
−1
.

Note that we allow  to be nonmonotonic.

2.1 The Equilibrium with N Bidders and its Properties

Let  be a number between zero and one. In the 2—k-PA with reserve

price  in [ ), the highest bidder wins when his bid is at least equal to ,

in which case he pays the weighted average of his own bid and the maximum

of the second highest bid and  with respective weights  and 1 − 11 No

payment is made by any other bidder. Thus, if  is small the rules of the

11All our results about the 2-k-PA when  is the (nonbinding) reserve price would still
hold true for any finite reserve price not larger than .
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2—k-PA are “close” to those of the 2-PA, that is, the SPA. Bidding strictly

above one’s value is weakly dominated in the 2—k-PA.

We construct in Theorem 1 below a standard FPA that has the same

equilibrium as the 2—k-PA. Thanks to this construction, results from the

literature on the FPA translate to the 2—k-PA. In particular, the equilibrium,

although complex, is unique (see Corollary 1 below).

Theorem 1-Characterization of the equilibrium of the 2—k-PA

with n bidders and link with the FPA: Let  be such that  ∈ (0 1).

(i) Equilibrium of the 2—k-PA: An n-tuple of strategies (1 (; )    (; ))

is an equilibrium of the 2—k-PA if and only if:

1. For all :  (; ) over [ ) specifies bidding strictly below

 and  (; ) specifies bidding bids not larger than .

2. 1 (; )    (; ) are bidding functions over ( ] such

that their inverses 1 (; ) = −11 (; )    (; ) = −1 (; ) exist, are

strictly increasing, strictly above the identity function, and form a solution

over (  ()] of the system of differential equations (1) below

1






ln
Y
 6=

 ( (; )) =
1

 (; )− 
, 1 ≤  ≤ , (1)

and their continuous extensions satisfy the boundary conditions:

 (; ) = , for all except possibly one ; (2)

1 ( () ; ) =  =  ( () ; ) = , (3)

for a certain value in ( ) of the parameter  ().

3. If  (; )  , then  (; ) over (  (; )] takes the

constant value .
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Moreover, if  =  or if  = 2, (2) can be replaced by (4) below and 3.

above never applies:

1 (; ) =  =  (; ) = . (4)

(ii) Relation to the FPA: An n-tuple of strategies is an equilib-

rium of the 2—k-PA if and only if it is an equilibrium of the FPA where the

bidders’ values are distributed according to 
1
1   

1
 .

Proof: See Appendix 1.

The differential equations (1) in Theorem 1 are the equilibrium FOC’s.

In fact, the expected payoff of bidder  with value    and bid    isZ 



( − − (1− )max (0 )) 
Y
 6=

 ( (
0; )) ,

whose derivative12 with respect to    is

( − )




Y
 6=

 ( (; ))− 
Y
 6=

 ( (; )) .

Setting this expression equal to zero at  =  (; ), we indeed find one of the

equations in (1)—the same as from the maximization of ( − )
Q
 6=

 ( (; ))
1

in the FPA with the modified value distributions.

As we state in Corollary 1, the equilibrium is (essentially) unique when the

reserve price is binding and, under the additional assumption of local strict

log-concavity at , when it is not. This assumption is equivalent to requiring

12The differentiability is proved in Appendix 1.
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that 1 ()    () tend monotonically towards +∞ as  approaches  on

an interval, however small, to the right of .

Corollary 1—Properties of the equilibrium of the 2—k-PA with n

bidders: Let  be such that  ∈ (0 1].
(i) Existence: There exists an equilibrium of the 2—k-PA.

(ii) Expression for the bidding functions: If (1 (; )    (; ))

is the equilibrium of 2—k-PA, we have:

 (; ) =  −

R 


Q
 6=



¡
 (; )

¢1
Q

 6=


¡
 (; )

¢1 ,

for all  in ( (; )  ], where  (; ) =  ( (; ) ; ) and  (; ) is the

inverse of  (; ).

(iii)More aggressive bidding by weaker bidders while preserving

reverse-hazard-rate bid dominance:

(iii.1) If  ≤ , then  (; ) ≥  (; ), over ( ], and


ln (; ) ≤



ln (; ), over (  ()], for all  ≤ ;

(iii.2) If  ()   (), for all  in ( ), then  (; )   (; ),

for all  in ( ).

(iii.3) If  ≤ , for all , then, in the characterization (i.1, i.2, i.3)

in Theorem 1, the initial condition (2) in (i.2) can be replaced by (5) below:

1 (; ) =  = −1 (; ) = ; (5)

and, in Theorem 1 (i.3), only  =  needs be considered.

(iv) Uniqueness: If   , the equilibrium is essentially unique13. It

is also essentially unique if  =  and there exists   0 such that 1  

13That is, unique up to the inessential indeterminacy for values not larger than  (see
(i.1) in Theorem 1).
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are strictly log-concave over ( + ).

Proof: See Appendix 1.

As we state in Theorem 2 (iii) below, under reverse-hazard-rate domi-

nance of 1 by the other ’s, the equilibrium approaches the truth-bidding

equilibrium of the SPA if  tends towards zero. The proof proceeds first

by showing that the bid shading in Corollary 1 (ii) by bidder 1, who is the

weakest by assumption and, from Corollary 1 (iii), the most aggressive bid-

der, vanishes at the limit. This is a consequence of: 1. the fact that bidder 1

bids higher than in a FPA with (− 1)  other bidders, with the same value
distribution as his; and 2. the obvious convergence towards truth-bidding of

the equilibrium of the FPA with ex ante homogeneous bidders when the

number of bidders tends towards infinity. Once this is established, the re-

sult for the other bidders follows. In fact, if another bidder’s bid stayed away

from his value, bidding closer to it would be a profitable deviation: it would

increase his probability of winning by the probability (which we now know

is bounded away from zero) with which bidder 1 bids within the gap and

the other bidders below it and it would increase his payment by a negligible

amount, as  tends towards zero. Theorem 2 also gives first bounds on rates

of convergence.

We first recall from Royden (1988) the definition of “derivates,” which

are generalizations of the concept of one-sided derivative, and introduce no-

tations, one of which for the elasticity of a density with respect to the cumu-

lative probability.

Definition: Let  (1  ) be a real-valued function defined over a

product of intervals with nonempty interiors  =
Q
=1

[ ] ⊆ R. Then,

for all  in  and all  the right-handed partial derivates of  at (− ) are

13



as follows:

+


 (− ) = lim∆→0

 (−  +∆)−  (− )
∆

+


 (− ) = lim∆→0

 (−  +∆)−  (− )
∆

.

Thus, +


 (− ) and

+


 (− ) are the supremum and infimum,

respectively, of the rates of increase of  with respect to  to the right of

. The standard right-handed derivative



 (− ) exists if and only if
+


 (− ) and

+


 (− ) are equal and finite, in which case it is equal

to their common value. If there is only one variable, that is,  = 1, the

derivates and the right-handed derivative are denoted +


,

+

, and 


.

Convention and Notations:

1. We keep denoting 1 (; )    (; ) and 1 (; )    (; )

the unique direct and inverse equilibrium bidding functions of the 2—k-PA,

and  (; ) the compound function 

¡
 (; ) ; 

¢
that connects the values

at which bidders  and  would tie. For convenience, we extend the inverse

bidding function  (; ) as the constant function  above the maximum

equilibrium bid  (), that is, we set:

 (; ) = ,

for all  () ≤  ≤  and all .

2. For all , we denote  () the elasticity of the density 
¡
−1 ()

¢
with respect to the cumulative probability , that is:

 () =
 ln 

¡
−1 ()

¢
 ln 

=
 0
¡
−1 ()

¢

¡
−1 ()

¢2 .
14



Theorem 2—Convergence of the equilibrium of the 2—k-PA with

n bidders towards truth-bidding: Extend the functions  (; ),  (; ),

 (; ) to  = 0 as follows:

 (; 0) =  (; 0) =  (; 0) = ,

for all  in [ ]. Then:

(i) Upper bound on the rate of convergence of the strategy of

a bidder who is weaker than some other bidders: Let    be such

that  ≤ , for all  ≤ . Then, we have, for all  in [ ]:

0 ≤ −+


 (; 0) 
+


 (; 0) ≤ ((− )  ())

−1
.

If  is [ ] when    and any interval [+  ], where   0, when

 = , the upper bound above on the derivates is “uniform” in  over , that

is:

lim→0max
∈

µ
max

µ
 −  (; )



 (; )− 



¶
− ((− )  ())

−1
¶
≤ 0.

Moreover, if  =  and the elasticity  is bounded from below, this is also

true for  = [ ].

(ii) Lower bound on the rate of convergence of the strategy of

a strongest bidder: Assume  ≤ , for all . Then, we have
14:

−+


 (; 0) 
+


 (; 0) ≥ ((− 1)  ())−1 .

(iii) Joint continuity of the bidders’ strategies when there exists

14Because we do not need it in our later developments, we have abstained to state the

uniformity of the lower bound in (ii) on the derivates −+
  (; 0) and

+

 (; 0), which
can be proved similarly to the uniformity of the upper bounds in (i).
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a weakest bidder: Assume 1 ≤ , for all . For all 1 ≤   ≤ , the

functions  (; )   (; )   (; ) are continuous jointly in both variables

  at (; 0), for all  in [ ].

Proof: See Appendix 2.

The assumption in (i) that the elasticity  be bounded from below is

equivalent to requiring that there exists a strictly positive number  , however

large, such that  
 is convex

15.

The analysis of the standard FPA is complicated by the singularity of the

system of FOC’s at the lower extremity of the winning bid interval. What

makes matters even worse in the 2—k-PA with  close to zero is that, as

the bidding functions tend towards the identity function, the system (1) is

nearly singular everywhere over the bid interval. Partly for this reason, it is

difficult to go much further than Theorem 2 while keeping the same level of

generality. However, as we show in the next subsection, explicit expressions

for the rate of change of expected revenues can be obtained in the two-bidder

case.

2.2 The two-bidder case

In addition to assuming two bidders, we also make the additional assump-

tion of strict log-concavity at  from the previous subsection and strengthen

15This assumption is also equivalent to the requirement that the “local -concavity” of
 be bounded from above (for other applications of local -concavity to auction theory,
see, for example, Mares and Swinkels 2011).

If  is log-concave at , the elasticity  is bounded from above, as  ≤ 1 over a small
interval ( + ). Thus, in this case, we could replace the additional assumption that 
be bounded from below by the assumption that it be bounded.

Similar assumptions—on the elasticity of the slope of demand functions—have long been

standard in the literature on oligopoly (see, for example, Seade 1980 a and b, Suzumura and

Kiyono 1987, Besley and Suzumura 1989, Suzumura 1992, Okuno-Fujiwara and Suzumura

1993).
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the stochastic dominance relation between the two value distributions to

power relation. Thus,  = 2 and

2 =  
1 (6)

for some constant  ≥ 1. This assumption of power relation immediately

implies 2 () = 1 () and hence reverse-hazard-rate dominance of 1 by

2. It also implies16 hazard-rate dominance, that is, 1 () ≥ 2 () and

1 () ≥ 2 (); with strict inequalities if   1 and  ∈ ( ).
We keep using primes and straight derivative signs for the derivatives

with respect to the bid or value. The system (1) of FOC’s and the terminal

condition (3) in Theorem 1 reduce to the system (7) and condition (8) below:

 ln1 (1 (; ))


=

1

(2 (; )− ) 

 ln2 (2 (; ))


=

1

(1 (; )− ) 
(7)

1 ( () ; ) = 2 ( () ; ) = , (8)

where  () ∈ ( ) is the maximum equilibrium bid. Thanks to the system
(7), how the derivatives of the bidding functions evolve with  informs us

on the rates of convergence of the bidding functions towards the identity

function.

From Corollary 1 (iii), bidder 1 bids more aggressively and, as a conse-

quence, bidder 2 needs a higher value to tie for winner of the auction, that is,

21 (; ) = 2 (1 (; ) ; ) ≥ . From hereon, we simplify our notations by

dropping the subscripts from 21. The equilibrium allocation of the 2—k-PA

is inefficient in the set of value couples (1 2) bounded from below by the

45-degree line and from above by the graph of  (; ) (see Figure 1).

16Indeed, it implies likelihood-ratio dominance. For these stochastic orders, see, for

example, Appendix B in Krishna (2009).
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FIGURE 1: Boundary between value couples leading to different allocations

in the 2—k-PA and the SPA.

Although, from Theorem 2 (iii),  (; ) approaches the identity function,

the value of its derivative does not approach one everywhere. Indeed, divid-
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ing the second equation in (7) by the first, we find:

 ln2 (2 (; ))

 ln1 (1 (; ))
=

2 (; )− 

1 (; )− 
; (9)

which, together with (6) and the condition (8), implies:

0 (; ) =
1


.

Thus, when the values are differently distributed, 0 (; ) stays away from

one.

To acquire information about the behavior of the derivative of , we

differentiate (9) and, after rearranging, we find:




ln

 ln2 (2 ())

 ln1 (1 ())

=

³
2 (; ) + 

2(2(;))
2(2(;))

´
−
³
1 (; ) + 

1(1(;))
1(1(;))

´
(1 ()− ) (2 ()− )

=
1 (2 (; ) ; )− 2 (1 (; ) ; )

(1 (; )− ) (2 (; )− )
, (10)

where the functions 1 2 are defined as follows:

 (; ) =  +


 ()
,

for all  in ( ] and   = 1 2,  6= . Thus,  (; ) would be bidder ’s

inverse bidding function if bidder  bid truthfully. The following properties

of these functions are simple to prove.

Lemma 1: There exist    0 such that 1 (; ), 2 (; ) can be con-

tinuously extended to [ + )× (− ) in such a way that, for  6= :

(i)  (; ) = , for all  in (− );
(ii) Over ( + )× (− ):  (; ) is continuously differentiable;

19



the derivative 0 (; ) with respect to  is strictly positive and bounded away

from zero; 

 (; ) is strictly positive and bounded from above; and  (+ ; ) 

, for all  in (− ).
(iii) Over ( ] × (−): 


−1 (; ) is strictly negative, bounded

from below, and equal to − ¡0 ¡−1 (; ) ; 
¢

¡
−1 (; )

¢¢−1
.

Proof: See Appendix 3.

The sign of the expression above does not depend directly on : ln2 ( (; ))

is concave or convex with respect to ln1 () depending on whether 1 ( (; ) ; )

is smaller or larger than 2 (; ). We are lead to consider the functions

−11 (2 (; ) ; )   (; ), and the identity function in the space of logarithms

of cumulative probabilities17. We denote the new functions Ψ (; ) Φ (; ),

and Λ and define them formally below. The linearity of Λ follows immedi-

ately from the power relation (6).

Definitions: Let  be in (0 ), where   0 is as in Lemma 1 above.

Let Ψ (; ) Φ (; ), and Λ be the following functions:

(i)

Ψ (; ) = ln2
¡
−11

¡
2
¡
−11 (exp) ; 

¢
; 
¢¢
,

for all  in (−∞ ln1 ( ())), where  () ∈ ( ] is defined as follows:

 () = −12 (1 (; ) ; ) ;

and

Ψ (; ) = 0,

for all  in [ln1 ( ())  0];

17 This method of proof appears to be novel in the literature on pay-your-bid auctions.
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(ii)

Φ (; ) = ln2
¡

¡
−11 (exp) ; 

¢¢
,

for all  in (ln1 ()  0] and, if   , at  = ln1 (), with  (; ) =

2 (1 (; ) ; );

(iii)

Λ () = ,

for all  in R−.

As 2 = 1, we have 2 (; ) ≥ 1 (; ) and  () in (i) above is well

defined. All functions above are continuous. The function Ψ (; ) is strictly

increasing over (−∞ ln1 ( ())) and equal to zero over [ln1 ( ())  0].

The function Φ (; ) is strictly increasing over its entire definition domain,

tends towards ln2 () if its argument  tends towards the infimum ln1 ()

of its domain, and vanishes at the supremum (zero).
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Λ

FIGURE 2: Possible configuration of the functions Ψ, Φ, and Λ when   1

and  = .

Figure 2 displays a possible configuration of the graphs of these functions.

From Corollary 1 (iii), Φ (; ) is at least equal to Λ, and strictly above it over

the interior of its definition domain if   1. Because Ψ (; ) reaches zero
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already at ln1 ( ()) and Φ (; ) only at zero, Ψ (; ) is above Φ (; ) in

the neighborhood of the origin. If   1, 2 (; )  1 (; ) and Ψ (; ) is

strictly above Λ. As we already inferred from (10), the position of Φ (; )

relative to Ψ (; ) determines the direction of its concavity. That is, Lemma

2 below holds true.

Lemma 2: If  = , assume 1 is strictly log-concave over ( + ),

for some   0. Then, when   1:

(i) Ψ (; )  Λ (), for all  in R−;
(ii) Ψ (; )  Φ (; ), for all  in (ln1 ( ())  0); and if   :

Ψ (ln1 () ; )  Φ (ln1 () ; ) = Λ (ln1 ()).

(iii) Φ (; )  Λ (), for all  in (ln1 ()  0);

(iv) Φ00 (; )  (; =) 0 if and only if Φ (; )  (; =) Ψ (; ),

for all  in (ln1 ()  0).

From the explicit expression in the definition of Ψ (; ), it is simple to

prove that it and its derivative tend towards Λ and its derivative. From

its definition and Theorem 2 (iii), Φ (; ) tends towards Λ. The downward

pointing arrows in Figure 2 above represent these convergences.

From Lemma 2, we can prove that the derivative of Φ (; ) converges

towards the derivative of Λ compactly over (ln1 ()  0), that is, uniformly

over every compact subinterval  of (ln1 ()  0). The main ideas of the

proof are as follows. From the convergence of Ψ (; ) and its derivative,

there exists 0 such Ψ0 (; ) is close to  over  and smaller or only possibly

slightly larger than  over [min 0], for all 0    0. If, at some point18

 in  and for small , the derivative of Φ (; ) was further above  than

Ψ0 (; ) is over [min 0], Φ (; ) could not at the same time tend towards

18The full formal argument rules out the existence of a sequence (; )→ (; 0), where
 ∈ , such that lim→+∞Φ0 (; ) exists in the weak sense (that is, can be infinite) and
is different from . See Appendix 3.
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Λ, remain above it, and be strictly increasing. For example, if Φ0 (; ) at

a point  was further above  and if Φ (; ) was not smaller than Ψ (; ),

Φ (; ) would be convex at  (from Lemma 2 (iv)), its derivative would even

be higher and Φ (; ) would hence never meet Ψ (; ) to the right of . As

depicted in Figure 3 (for the case  = ), Φ (; ) would then be equal to zero

to the left of ln1 ( ()); something which is impossible as Φ (; ) vanishes

only at  = 0.
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FIGURE 3: Ruling out Φ0 (; ) further above  than Ψ0 (; ) is while Φ (; )

is not smaller than Ψ (; ).

If Φ0 (; ) at a point  was again further above  than Ψ0 (; ) is over

[min 0], but if Φ (; ) was now less than or equal to Ψ (; ), Φ (; ) would

be concave at  (from Lemma 2 (iv)), its derivative would be higher and hence
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Φ (; ) would never meet Ψ (; ) and would remain concave to the left of .

However, as the derivative of Λ is the constant , a derivative of Φ (; )

uniformly bounded away from  to the left of  is incompatible with Φ (; )

tending everywhere towards Λ. For an illustration of this case, see Figure 4

below. Ruling out Φ0 (; ) further below  than Ψ0 (; ) is over  proceeds

along similar lines.
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FIGURE 4: Ruling out Φ0 (; ) further above  than Ψ0 (; ) is while Φ (; )

is not larger than Ψ (; ).

We have Lemma 3 below19, whose detailed proved is in Appendix 3.

19Because of the discontinuity of the derivative of Ψ (; ) at ln1 ( ()), we express
statement (ii) below in terms of the inverse function Ψ−1 (; ). As it can be easily
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When  = , in order to bound Φ0 (; ) for  tending towards −∞, that
is, for bidder 1’s value approaching , we assume in (v) below that the elas-

ticity 1 of the density 1 with respect to 1 is bounded from below.

Lemma 3: If  = , assume 1 is strictly log-concave over ( + ),

for some   0. Then, when the function spaces below are endowed with

the compact-open topology (the topology of uniform convergence over every

compact subset):

(i) lim→0  () = ;

(ii) Ψ−1 (; ) tends towards Λ−1 in 1 (R−R);
(iii) Φ (; ) tends towards Λ in 1 ((ln1 ()  0) R); if   ,

Φ (; ) also tends towards Λ in 0 ([ln1 ()  0] R);
(iv) lim(;)→(0;0)Φ0 (; ) ≤ ;

(v) If the elasticity 1 is bounded from below, then: lim(;)→(−∞;0)Ψ0 (; ) ≤
 and, when  = , lim(;)→(−∞;0)Φ0 (; ) ≤ .

Proof: See Appendix 3.

Thanks to Lemma 3, we can prove that, away from the extremities of

the value interval, the slope of  (; ) tends towards one. We list this and

other useful consequences from Lemma 3 about the limits of derivatives in

Theorem 3 below.

Theorem 3—Convergence of the derivatives with respect to value

or bid: If  = , assume 1 is strictly log-concave over ( + ), for some

  0. Extend the derivatives 0 (; ), 
0
 (; )  

0 (; ) to  = 0 as follows:

0 (; 0) = 0 (; 0) = 0 (; 0) = 1,

verified by appealing to (i), (ii) is equivalent to the uniform convergence over any inter-

val [ ln1 ( ())] of Ψ (; ) and its derivative towards Λ and its derivative, that is, to
the following statement: (ii)’ max∈[ln1(())]max (|Ψ0 (; )− |  |Ψ (; )− |) tends
towards zero with , for all finite   0.
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for all  in ( ) and all  = 1 2. Then:

(i)20 0 (; )  
0
 (; )  

0 (; ) are continuous jointly in both variables

at (; 0), for all  in ( );

(ii) lim(;)→(;0)0 (; ) ≤ 1;
(iii) If  =  and the elasticity 1 is bounded from below, then

lim(;)→(;0)
 ln2((;))

 ln1()
≤ .

Proof: See Appendix 4.

From the initial system of differential equations (7) and the convergence

of the derivatives, we obtain in Theorem 4 below the rates of convergence of

the bidding functions and the function , which determines the equilibrium

allocation, and hence of the seller’s expected revenues. Let  () and

 () be the expected revenues and total surplus from the equilibrium of

the 2—k-PA. Thus,  (0) and  (0) are the expected revenues and total

surplus from the SPA.

Theorem 4—Rates of convergence with respect to k: If  = ,

assume 1 is strictly log-concave over ( + ), for some   0. Then:

(i) For all  in ( ) and all   = 1 2 with  6= , we have:

lim
(;)→(;0)

 (; )− 


= lim

()→(0)
−  (; )


=  ()

−1
;

lim
()→(0)

 (; )− 


=

 − 1


1 ()
−1
.

(ii) For all   0, lim→0max∈[+]
³
(;)−


− ( − 1) 1()

1()

´
≤ 0.

When  = , this inequality also holds true for  = 0 if the elasticity 1 is

bounded from below.

20As we already observed, 0 (; ) = 1
 , for all . Consequently, 

0 (; ) is discontinuous
at (; 0) if   1.

29



(iii) If  =  and the elasticity 1 is bounded from below, then


 (0) and 


 (0) exist and we have:




 (0) = ( − 1)

Z 



(1 ()− 2 ())2 () 1 () ≥ 0, (11)




 (0) = 0; (12)

and 

 (0)  0 if and only if 1 2 are not identical.

(iv) If   , we have:

+


 (0) ≥ ( − 1)

Z 



(1 ()− 2 ())2 () 1 () ≥ 0;

and
+

 (0)  0 if and only if 1 2 are not identical.

Proof: See Appendix 4.

When  = , assume the seller maximizes the expectation of a nonnegative

linear combination  +  of revenues and total surplus. If he is not

indifferent towards revenues, that is, if   0, he will want to increase  from

zero, as, from this last theorem, 


 (0) + 



 (0) = 



 (0) 

0. Although the optimal size of  depends on the particular coefficients

  and value distributions, it is always strictly positive. Example 2

below, which we alluded to in the introduction, demonstrates that even if

the seller cares only about revenues, that is,  = 0, he may not want to

increase  all the way to 1. This was to be expected as the bias of the FPA

equilibrium allocation towards the weak bidder is in general not confined to

instances where this bidder’s virtual value is the larger one.

Because we cannot uniformly bound the rate of increase of  in a neigh-
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borhood of the reserve price if it is binding and because bidder 2’s virtual

value is bounded above bidder 1’s in such a neighborhood, we cannot rule

out rates of increase even higher than the expression in (iv) above.

Example 1: Consider the example where the values are distributed over

[0 1] according to power distributions  () =  with  ≥ 1, for  = 1 2.
From Theorem 4 (iii), we can easily compute the logarithmic derivative of the

expected revenues with respect to . We find21 

ln (0) = (2−1)2

12(1+2+2)
.

Example 2: The FPA brings more revenues than the SPA in Exam-

ple 1 above22. Maskin and Riley (1985) show that the FPA brings strictly

less revenues with two ex-ante different bidders and two possible values, one

of which strictly above the reserve price. Any two such distributions are

power related and can hence be approximated (for the topology of the weak

topology, the weak-* topology) by power-related differentiable cumulative

distributions with a common full interval support and that satisfy all our

assumptions. Lebrun (2002) then guarantees the existence of such distrib-

utions for which the unique equilibrium of the FPA is sufficiently close (for

the weak-* topology) to the original equilibrium for the SPA to bring strictly

more revenues. Nevertheless, for these same approximating distributions,

Theorem 4 implies that the revenues from the 2—k-PA exceed those from the

SPA (and hence the FPA) for all small   0.

Remark: Our results depend on full value support. In the two-bidder

two-value example of Maskin and Riley (1985), a high-value bidder’s equilib-

rium bid distribution in the 2—k-PA becomes concentrated at the high and low

values and the revenues tend towards the, smaller, revenues from the FPA

as  approaches zero. As we mentioned in Example 2 above, our results

21This formula gives 
 ln (0) = 03214 when 1 = 1 and 2 = 4. As

the numerical estimations in Marshall, Meurer, Richard and Stromquist (1994) imply

ln (1) − ln (0) = 00803, the relative rate of increase 
 ln () must obviously

decrease at some ’s between 0 and 1. This is also the case for 1 = 2 and 2 = 3, where
ln (1)− ln (0) = 00071 while 

 ln (0) = 00238.
22See, for example, Lebrun (1996).
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imply the existence of small revenue-improving ’s for any given approxima-

tion of this discrete example by distributions that satisfy our assumptions,

in particular of full interval support.

3. The Second-Price Auction with Toeholds and the Amsterdam

Auction with Two Bidders

The rules of the (second-price) Amsterdam auction or AA with two bid-

ders are identical to those of the SPA except that the seller hands both

bidders a premium equal to the share  of the difference between the losing

bid and the reserve price 23. We assume that bidders cannot submit bids

above a very large (larger than ) but finite bound 24,25. The AA can be

considered a slight variant of the SPA when  is small. As it can be easily

verified, bidding strictly below value is weakly dominated in the AA.

This auction is equivalent to a SPA preceded by the sale to every bidder

and at the unit price  of a share  of ownership in the item to be auctioned26.

Indeed, every bidder would still receive as additional benefit the proportion

 of the difference between the auction price and , although now as profits

from his ownership share.

As in the previous subsection, 1 is continuous over R and continuously
differentiable over [ ]. Because we wish to apply the results of Subsection

2.2 to the value distributions “reflected” through the middle (+ ) 2 of the

value support, we apply this same transformation to our assumptions. Thus,

23As there are two bidders, the auction proceeds directly to the “second-stage” where 
is the “bottom price,” in the terminology of Hu, Offerman, and Zhou (2011).
24Or we may assume that they become infinitely risk-averse above a certain high bid

threshold.
25If unboundedly large bids were allowed, multiple equilibria would exist (as they would

exist in the FPA if there was no lower bound on the allowable bids). See also Footnote

28.
26A bidder is not allowed to bid if he refuses to buy his share (when only one bidder

bids, the auction price is the reserve price ). Not buying one’s share is then weakly

dominated.
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in this section, 1 is twice-continuously differentiable over [ ) and has its

derivative 1 strictly positive over [ ).

Similarly to the 2—k-PA, the equilibrium of the AA is related to the equi-

librium of a FPA with modified value distributions27. We have Theorem 5

below, where  () is the bidders’ common equilibrium bid at the smallest

value .

Theorem 5: Let  be in (0 1].

(i) Equilibrium of the AA: A couple of strategies (1 (; )  2 (; ))

is an equilibrium of the AA if and only if:

1. For all  = 1 2:  (; ) specifies bidding bids not smaller

than .

2. 1 (; )  2 (; ) are bidding functions over [ ) such that

their inverses 1 (; ) = −11 (; )  2 (; ) = −12 (; ) exist, are strictly

increasing, strictly below the identity function, and form a solution over

[ ()  ) of the system of differential equations (13) below

 ln (1− 1 (1 (; )))


=

1

(2 (; )− ) 

 ln (1− 2 (2 (; )))


=

1

(1 (; )− ) 
(13)

27If the premium is paid only to the loser and not to the winner, submitting a bid

strictly smaller than the value divided by 1 +  is weakly dominated. The equilibrium³b1 (; )  b2 (; )´ of this variant of the AA for the value distributions 1 2 is related
to the equilibrium

³e1 (; )  e2 (; )´ of the AA, the way we have defined it (following
Goeree and Offerman, 2004), for the value distributions e1 e2 over [ (1 + )   (1 + )]

such that e1 () = 1− (1− 1 ((1 + )))
11+

, for all  ∈ [ (1 +   (1 + ))],  = 1 2.

The relation between the equilibria is as follows: b (; ) = e ( (1 + ) ; ), for all  in
[ ] and  = 1 2. In particular, every bidder with value  bids  (1 + ) in this variant
of the AA.
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and their continuous extensions satisfy the boundary conditions:

1 ( () ; ) = 2 ( () ; ) = , (14)

1 (; ) = 2 (; ) = , (15)

for a certain value in ( ) of the parameter  ().

(ii) Relations to the 2—k-PA and the FPA: Let (1 (; )  2 (; ))

be a couple of strategies. Then, the three statements below are equivalent:

1. (1 (; )  2 (; )) is an equilibrium of the AA;

2.
³e1 (; )  e2 (; )´ is an equilibrium of the FPA where the

bidders’ values are distributed according to e 1
1  e 1

2 ;

3.
³e1 (; )  e2 (; )´ is an equilibrium of the 2—k-PA where

the bidders’ values are distributed according to e1 e2;
where the transformed strategies and value distributions are defined as

follows:

e (e; ) = + −  (+ − e; )e (e) = 1−  (+ − e) ,
for all e in [ ] and  = 1 2.

Proof: Similar to proof of Theorem 128.

If we perform the change of variables e +  =  + e =  +  into the

28Here, the proof of the “terminal” condition  (; ) = ,  = 1 2, in the AA is similar

to the proof of the “initial” condition e (; ) = ,  = 1 2, in a FPA where the reserve
price is not larger and possibly strictly smaller than . If the condition at  was not
satisfied in the AA, a bidder who would win for sure for some value    (from our

assumption that bids must not exceed , such a bidder would exist) would increase his
payoff by decreasing his bid to a bid    that would lose with strictly positive probability.
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expression
R 

( − 0 +  (0 − ))  ( (

0))+
R 

 (− )  ( (

0)) of the

expected payoff of bidder  with value  and bid  in the AA, we obtain:

Z 


³e − (1− )e0 − e´  e

³e

³e0; ´´
+

Z 



( − 0 +  (0 − ))  ( (
0; )) ,

where the second term—bidder ’s payoff when winning with certainty—does

not depend on bidder ’s decision variable; and the relation with the 2—k-PA

with value distributions e1 e2 becomes apparent.
Theorem 5 allows to translate to the AA our results from the previous

section, for example, those on the existence and uniqueness of the equilibrium

and those on the convergence towards truth bidding (Corollary 1 and Theo-

rem 2). We focus on the results about the rates of the change of expected

revenues  and total surplus . Thus, we assume the decumulative

functions are power related, that is:

(1− 2) = (1− 1)
1



for some constant , from which 1 = 2 follows. Again, we assume bidder

2 is strong, that is,  ≥ 129.
Furthermore, the decumulative function 1−1 is strictly log-concave over

(−  ), for some   0, and such that the elasticity e1 () of its density
1
¡
−11 (1− )

¢
with respect to the decumulative probability  is bounded

from below. This last assumption is equivalent to the existence of   0

such that (1− 1)

is convex. The local strict log-concavity of 1− 1 at 

implies that the hazard rate 1 () increases to +∞ as  approaches .

As e1 = e 
2, bidder 1 is the strong bidder and bids less aggressively than

bidder 2 in the 2—k-PA and, as the bidding functions in the two auctions are

29Again, 2 likelihood-ratio dominates 1 and, in particular, we have 2 ≥ 1.
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inversely related, he bids more aggressively in the AA. See Figure 5.
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-

?

¾







()
2(; )

1(; ) = 

̃1(̃; ) = ̃

1(; ) =  ̃1(̃; ) = ̃

FIGURE 5: Relation between the equilibria of the 2—k-PA and AA.

Values and bids are measured along the lower and left-hand axes for the

AA and along the upper and right-hand axes for the 2—k-PA.

We have Theorem 6 below.

Theorem 6—Rates of change with respect to k:
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(i) For all  in ( ) and all   = 1 2 with  6= , we have:

lim
(;)→(;0)

−  (; )


= lim

()→(0)
 (; )− 


=  ()

−1
;

lim
()→(0)

 (; )− 


= ( − 1)1 ()−1 .

(iii) The right-hand derivatives 

 (0) and 


 (0) exist and

we have:




 (0) = ( − 1)2

Z 



1 ()
−1 (1− 1 ()) 2 () ≥ 0, (16)




 (0) = 0; (17)

and 

 (0)  0 if and only if 1 2 are not identical.

Proof: See Appendix 5.

The proof of Theorem 6 is similar to the proof of Theorem 4 with one

significant difference: in the AA, contrary to the 2—k-PA, either bidder with

the lowest value  makes some expected payoff—the premium he receives.

However, the effect on the expected revenues is only of the second-order30.

In fact, the premium is the product of the share  and the difference  ()−
between the minimum bid and , which is also the difference between  and

the maximum bid e (; ) in the 2—k-PA for the transformed distributions
and, consequently, vanishes as  becomes small (from Theorem 2).

It is easy to design examples similar to Examples 1 and 2 in the previous

section. Note that, as the decumulative functions too are power related

in the discrete 2-value example of Maskin and Riley (1985), it can also be

approximated by continuous distributions satisfying all the assumptions of

this section.

30This is is similar to the observation in Bulow, Huang and Klemperer (1999, page 442).
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6.Conclusion

From Myerson (1981), improving on the revenues from the SPA would

require “handicapping” the strong bidder. However, the implementation of

handicaps may significantly decrease efficiency and may require information

the auctioneer does not possess. With two bidders, we showed through

explicit expressions for the first-order effects that revenues are higher, with-

out significant change in efficiency, in the non-discriminatory 2—k-PA (under

power related value cumulative functions) and the SPA with toeholds and the

AA (under power related value decumulative functions) if the link between

the winner’s net payment and own bid is small and positive. The equilibrium

allocation is slightly biased towards the weak bidder as the strong bidder bids

less aggressively in reaction to this link. As the bidders’ virtual values dif-

fer even when their actual values are identical, this slight bias produces an

increase in expected revenues of a higher magnitude than the decrease in

expected total surplus. We conjecture that the similar link implemented by

the price increment rule in the electronic auction has similar effects31.

We characterized the equilibrium of the 2—k-PAwith  bidders and proved

that, if there exists a weakest bidder, it tends towards truth-bidding when 

vanishes.

Appendix 1

Lemma A1: lim→  ()= +∞
31This is consistent with the following intuition. If bidder  with value  and bid 

faced bidder  who bid “close” to his value, bidder ’s expected payoff would be close toR −∆


( −  −∆)  () + ( − ) ( ()−  (−∆)), where ∆ is the price increment.
The FOC would then be  (;∆) = +( ()−  (−∆))  (), a strong bidder would
shade his bid more, and higher revenues would ensue for small ∆’s. Here, the effect on

revenues would actually be of the second-order in ∆ and the effect on surplus of a higher
order. Whether this heuristic argument can be made rigorous is left for future work.
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Proof: As we noticed after stating our assumptions, lim→ () =

+∞. If lim→
 ()  +∞, the mean value theoremwould imply lim→



 () =

−∞, which would contradict our assumptions. ||

Proof of Theorem 1:

Proof of the characterization in Theorem 1 (i):

We present only the substance of the arguments. They can easily be

made more formal along the lines in Lebrun (1997, 1999).

Sketch of the proof of the necessity of the characterization in

Theorem 1 (i.1, i.2, i.3):

A. A bidder’s weakly undominated strategy must not recommend bid-

ding strictly above his value. (i.1) follows.

B. As in Lemmas A1-1 and A1-2 in Lebrun (1997),  is the minimum of

the support of any bidder’s bid above  and any bidder with value    has

a strictly positive expected payoff. As in Lemma A1-4 in Lebrun (1997),

Myerson (1981) implies the continuity and monotonicity with respect to the

value of any bidder’s interim expected payoff.

C. Similarly to the statement of Lemma A1-21 in Lebrun (1997), if   

is in bidder ’s bid support, must be a point of increase to the left of at least

two bidders’ bid cumulative functions. That is, there must exist bidders 

and ,  6= , such that  (− ; )   (; ) and  (− ; )   (; ),

for all   0, where   are bidders  and ’s cumulative functions that

are continuous from the right. Otherwise, there would exist a gap (−  ]

where no other bidder bids and a bidder would increase his payoff strictly if

he bid − when he is supposed to bid close to . Notice that bidder  may

be one of the two bidders  and 32.

32The proof here is different from the proof of Lemma A1-21 in Lebrun (1997). This

latter proof uses previously established properties of the equilibria of the FPA.
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D. There does not exist a bid    that is a mass point of the bid

distributions of two or more bidders. Because the value distributions are

atomless, if there existed such a bid, a bidder would submit  with a strictly

positive probability for some values strictly smaller than . This bidder

would increase strictly his payoff if he bid slightly above  instead.

E. Similarly to the statement of Lemma A1-7 in Lebrun (1997) (the

proof, however, is different), the bid distributions are atomless strictly above

. In fact, from D. above, there could only exist an atom    of a single

bidder’s bid distribution. From C., there exists another bidder, say bidder

, who bids at or below and arbitrarily close to . For a deviation slightly

above  by bidder  not to be strictly profitable, his value must approach 

when his bid approaches . From the continuity in B., his payoff when his

value is  must therefore be:

(1− )

Z 



(−max ( )) 
Y
 6=

 (; ) ;

while if he submits bids close to and above bid  − , with   0, it would
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tend towards:


Y
 6=

 (− ; ) + (1− )

Z −



(−max ( )) 
Y
 6=

 (; )

= (1− )

Z 



(−max ( )) 
Y
 6=

 (; )

+

(

Y
 6=

 (− ; )− (1− )

Z
(−)

(−max ( )) 
Y
 6=

 (; )

)

≥ (1− )

Z 



(−max ( )) 
Y
 6=

 (; )

+

(

Y
 6=

 (− ; )− (1− )

ÃY
 6=



¡
−; 

¢−Y
 6=

 (− ; )

!)

 (1− )

Z 



(−max ( )) 
Y
 6=

 (; ) ,

where the last inequality holds for all   0 sufficiently small. Bidder 

would then have a strictly profitable deviation, which is impossible at an

equilibrium.

This also proves that the bid cumulative functions 1 (; )    (; )

and hence the bidder’s expected payoffs are continuous in   .

F. Because a bidder’s expected payoff when he bids strictly above  has

strictly increasing differences in his bid and value, equilibrium bidding strate-

gies must be nondecreasing (the proof of the monotonicity in Lemma A1-8

of Lebrun 1997 can also be easily adapted to the 2—k-PA) and consequently,

from E., strictly increasing. Theorem 1 (i.3), where  (; ) is the uniquely

determined inverse of  (; ), follows. (2) also follows as any bidder with a

value    would increase his bid slightly instead of bidding  if a tie could

occur there with strictly positive probability.

G. Similarly to Lemma A1-22 in Lebrun (1997) for the FPA (see also

Appendix A and Figure 1 in Lebrun, 1999), we can also prove that if bidder
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’s strategy  (; ) is continuous at  and specifies bidding  (; ) = 

strictly inside a discontinuity jump (0 00) of the strategy of bidder  with

value , then bidder  has a strictly higher value, that is,   .

In fact, bidder ’s expected payoff when he submits  must be at least

what he obtains with the bid 0, that is:Z 



( − − (1− )max ( )) 
Y
6=

 (; )

= ( − )
Y
6=

 (; ) + (1− )

Z 



Y
6=

 (; ) 

= ( − )
Y
6=

 (; ) + ( − )
Y
6=

 (; )

+ (1− )

Z 



Y
6=

 (; ) 

≥
Z 0



( − 0 − (1− )max ( )) 
Y
6=

 (; )

= ( − )
Y
6=

 (
0; ) + ( − 0)

Y
6=

 (
0; )

+ (1− )

Z 0



Y
6=

 (; ) ,

and therefore:

( − )
Y
6=

 () + ( − )
Y
6=

 ()

+ (1− )

Z 

0

Y
6=

 () 

≥ ( − )
Y
6=

 (
0) + ( − 0)

Y
6=

 (
0) ,
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and, after dividing both sides by  (; ) =  (
0; ):

( − )
Y
6=

 (; ) + ( − )
Y
6=

 (; )

+ (1− )

Z 

0

Y
6=

 (; ) 

≥ ( − )
Y
6=

 (
0; ) + ( − 0)

Y
6=

 (
0; ) . (A1.1)

On the other hand, 0 must be at least as good as  for bidder  and we

have:

( − 0)
Y
6=

 (
0; )

≥ ( − )
Y
6=

 (; ) + (1− )

Z 

0

Y
6=

 (; ) 

≥  (
0; )

(
( − )

Y
6=

 (; ) + (1− )

Z 

0

Y
6=

 (; ) 

)
,

and dividing both sides by  (
0; ) we find:

( − 0)
Y
6=

 (
0; )

≥ ( − )
Y
6=

 (; ) + (1− )

Z 

0

Y
6=

 (; ) . (A1.2)

(A1.1) and (A1.2) imply ( − )
Q
6=

 (; ) ≥ ( − )
Q

6=
 (

0; ),

that is:

( − )

ÃY
6=

 (; )−
Y
6=

 (
0; )

!
≥ 0.

From C.,
Q
6=

 (; )−
Q
6=

 (
0; )  0 and we must have  ≥ . If 
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was equal to , there would exist another 
0
   where bidder ’s strategy

 would be continuous and recommend a bid within bidder ’s jump, which

(as we have just shown) would be impossible. Consequently,   .

H. The supports of the bidders’ bid distributions have the same max-

imum. In fact, if this was not the case by monotonicity (F. above) there

would exist a bidder  who submits 0 when his value is  and a bidder  6= 

whose strategy is continuous at a    and such that  () =   0. The

same proof as in G. above rules out such a possibility. (3) follows.

I. As in the proof of Lemma A1-18 in Lebrun (1997), which is similar

to the proof of Lemma 3.6 in Griesmer, Levitan, and Shubik (1967), we can

prove the differentiability of a bidder’s probability of winning with respect

to his own bid where his bidding strategy is locally continuous strictly above

. The main idea of the proof is to express that an optimal  is better for

bidder  with value  than a bid 0 as the inequality below:Q
 6=

 (; )−
Q
 6=

 (
0; )

− 0
≥

Q
 6=

 (
0; )

 − 
− 1− 

 − 

R 
0
Q
 6=

 (; ) 

− 0
,

if 0 ≤  and the reverse inequality if 0 ≥ . Making  − 0 tend towards

zero in such inequalities and appealing to the continuity of  (; ) above 

(from E. above) gives the result.

J. As in the proof of Lemma A1-19 in Lebrun (1997), from I. above

the inverse bidding functions that are strictly increasing over an interval sat-

isfy a system of differential equations similar to (1). In fact, the interval

is the range of the corresponding direct continuous bidding functions and is

included in a discontinuity jump of the other bidding functions. The prob-

ability of outbidding the bidders whose bidding functions jump is constant

within the jump and can be factored out of the first-order conditions of the

bidders bidding inside the jump.

K. From G., the only remaining possible kind of discontinuity is when

some bidders have “nested” discontinuity jumps and the other bidders bid
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continuously within the smallest jump (0 00) for strictly higher values. Rul-

ing out this last type of discontinuity proceeds as in the proof of Lemma

A1-24 in Lebrun (1997) (see also Appendix A and Figure 2 in Lebrun 1999)

by showing that increasing his bid from 0 or decreasing it from 00 must be

strictly profitable to the bidder with the smallest jump. In turn this follows

from expressions, obtained from the system in J. above, for the first-order

effects of these two deviations on this bidder’s expected payoff.

More precisely, suppose bidder ’s bidding strategy  jumps from 0 to 00

at , the jump (
0 00) is included in discontinuity jumps of bidders 1  −1,

and bidders  + 1   bid continuously within this jump. The derivative

with respect to the bid  within the jump of bidder ’s payoff is:


Y


 (; )

(
− + ( − )

X





ln (; )

)

= 
Y


 ( (; ))

(
− + ( − )

X





ln ( (; ))

)
,

where  is
Q


 (; ) =
Q


 ( (; )), which is constant in (
0 00).

From the system of differential equations the functions ,   , satisfy

(according to J.), this is also equal to:

 ( − )
Y


 ( (; ))(
− 1

 − 
+

1

−  − 1
X


1

 (; )− 

)
.

A nonpositive right-hand derivative at the lower extremity 0 of the jump and

a nonnegative left-hand derivative at the upper extremity 00, as an equilib-
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rium would require, would imply:ÃX


 − 

 (; )− 

!
=0

≤
ÃX



 − 

 (; )− 

!
=00

,

which is impossible because, from G. above,  (; )   and consequentlyP


−
(;)− is strictly decreasing in .

All bidding functions are therefore continuous and the system (1) is sat-

isfied by all inverse bidding functions. We have proved that any equilibrium

in weakly undominated strategies satisfies (i.1, i.2, i.3).

Sketch of the proof of the sufficiency of the characterization (i.1,

i.2, i.3)33

It is weakly dominated to submit a bid strictly above one’s value. It is

unprofitable to submit a bid strictly below  when one’s value is strictly above

 or to submit a bid strictly above the common maximum bid  (). The

sufficiency of the system (1) of FOC’s then follows from the strict monotonic-

ity of the strategies and the nonnegativity of the cross second-order partial

derivative, equal to 

ln
Q
 6=

 ( ()), of any bidder ’s payoff with respect

to his own bid  in (  ()) and own value (a direct proof may proceed as

the proof in Appendix A in Lebrun 1999 and Section 3 in Lebrun 1997).

Proof of Theorem 1 (ii): From Theorem 1 in Lebrun (1999), the

differential system and boundary conditions in (i) are the same as those

that characterize the equilibria of the FPA where the value distributions are


1
1   

1
 and (ii) follows.

33The requirement that if  ()   then   , as in Theorem 1 (3) in Lebrun (1999),

is not necessary. In fact, it is implied by the system of differential equations (as proved

in Lemma A2-7 in Lebrun, 1997).
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End of the proof of Theorem 1: That all bidding functions must

start rising from  if  =  or if  = 2 then follows from Theorem 1 (3)34 and

Corollary 6 in Lebrun (1999). (4) therefore holds true. ||

Proof of Corollary 1:

Proof of (i): This follows from Theorem 1 (ii) above and Lebrun (1999)

(or other papers on the FPA, such as Lebrun 1997 or Maskin and Riley

2000)35.

Proof of (ii): The formula is a direct consequence of Theorem (ii) above

and the envelope theorem or Myerson (1981).

Proof of (iii): Because 
1
 

1
 = ()

1
,  ¹  implies


1
 ¹ 

1
 . From Corollary 3 (ii) in Lebrun (1999), we then have

 (; ) ≥  (; ) or, equivalently,  (; ) ≥  (; ). From the formula

(A2.2) in Lebrun (1999) or from the difference between the equations (1) for

 and , we find:




ln





(; )

=



ln (; )− 


ln (; )

=


 (; )− 
− 

 (; )− 

≥ 0,

and (iii.1) is proved.

Assume  ()   (), for all  in ( ). If there existed  in (  ())

such that  (; ) =  (; ), we would have from (1) (see the proof of

(iii.1) above) 0 (; )  ( (; )) =


ln ( (; )) =



ln ( (; )) =

34Also from Lemma A2-7 in Lebrun (1997).
35Of course, it could also follow from the literature (for example, Reny 1999) on the

existence of a Nash equilibrium in discontinuous games.
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0 (; )  ( (; )). From    over ( ), we would then have 
0
 (; ) 

0 (; ) and  (; ) would be strictly larger than  (; ) to the right of ,

which would contradict (iii.1). No such  then exists and we have proved

(iii.2).

From (iii.1), all bidders 1 to  − 1 must bid at least as aggressively as
bidder  and hence, from Theorem 1 (i), only bidder ’s bidding function may

take the constant value  and the modification (iii.3) to the characterization

in Theorem 1 follows.

Proof of (iv): Uniqueness when    follows from Lebrun (1997, 1999)

(specifically, Corollary 2 (i) in Lebrun 1999 or Corollary 2 in Lebrun 1997).

Strict log-concavity of  and strict log-concavity of 
1
 are equivalent.

Uniqueness when  =  then follows from Lebrun (2006). ||

Appendix 2

Proof of Theorem 2:

Proof of (i): For all  ≤ , the assumption of reverse-hazard-rate

dominance and Corollary 1 (iii) imply:Q




¡
 (; )

¢
Q




¡
 (; )

¢ ≤ µ ()

 ()

¶−
.

Obviously, we also have: Q




¡
 (; )

¢
Q




¡
 (; )

¢ ≤ 1.
Consequently, from Corollary 1 (ii) we find:

0 ≤  −  (; )


≤ 1



Z 



µ
 ()

 ()

¶(−)
, (A2.1)
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from which it follows:

0 ≤ lim→0
 −  (; )



≤ lim
→0

1



Z 



µ
 ()

 ()

¶(−)


=
 ()

(− )  ()
,

where the equality is from Lemma A2 (i) below.

That the upper bound is uniform over , that is,

lim→0max
∈

µ
 −  (; )


−  ()

(− )  ()

¶
≤ 0, (A2.2)

for    and  = [ ] is a consequence of (A2.1) and Lemma A2 (iv) and

for  =  and  = [+  ], where   0, of (A2.1) and Lemma A2 (iii).

From Lemma A2 (v), it is uniform over [ ] if  =  and  is bounded from

below. We have proved the statements in (i) about  (; ).

Let  and  be arbitrary strictly positive numbers. From (A2.2), for all

 = [ ] if    or  = [+  ] with   0 if  = , there exists 0  0

such that for all 0    0 we have:

 −  (; )


≤  ()

(− )  ()
+ ,

for all  in . Because  ≤  (; ), we have  (; ) ∈  and the inequality
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above applies to  =  (; ), for all  in . We find36:

0 ≤  (; )− 



≤  (; )−  ( (; ) ; )



≤  ( (; ))

(− )  ( (; ))
+ . (A2.3)

From the continuity of 
(−) , we then obtain that  (; ) tends towards 

uniformly over  when  tends towards zero and the statements in (i) about

 (; ) then follow from (A6.3). If  is bounded from below, the same

proof (but using the convergence of  ()  () towards zero when  tends

towards ) goes through with  = [ ] and establishes the remainder of (i).

Proof of (ii): From the assumption of reverse-hazard-rate dominance

and Corollary 1 (iii), we have:Q




¡
 (; )

¢
Q




¡
 (; )

¢ ≥ µ ()

 ()

¶(−1)
,

and consequently:

 −  (; )


≥ 1



Z 



µ
 ()

 ()

¶(−1)
,

36 ( (; ) ; ) =  only when  ≤  (). Otherwise,  ( (; ) ; ) ≤ .
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for all  ≤ . From Corollary 1 (ii), we then find:

lim→0
 −  (; )



≥ lim
→0

1



Z 



µ
 ()

 ()

¶(−1)


=
 ()

(− 1)  () .

(ii) follows.

Proof of (iii): We first prove the statement about 1 and 1. If   ,

from (i) we have that 1 (; ) and 1 (; ) are continuous in  uniformly for

all  in [ ] and thereby jointly continuous. We may then assume  = .

From (i), 1 (; ) and 1 (; ) are continuous in  locally uniformly with

respect to  at (; 0), for all  in ( ]. The joint continuity at all such

points follows. As  = 1 (; ) ≤ 1 (; ) ≤ , for all  and , the joint

continuity of 1 (; ) at (; 0) is obvious. Take any   . Then, for all  in

[ 1 (; )] we have, from the monotonicity of 1,  = 1 (; 0) ≤ 1 (; ) ≤
1 (1 (; ) ; ) = . As 1 (; ) tends towards  as (; ) tends towards

(; 0),  (; ) is continuous with respect to both variables at (; 0) 

Let  be different from 1. For all   ,  (; ) must be optimal for bid-

der  with value  and in particular better than the bid . After integration

by parts, his expected payoff (1− )
R 

( −max ( )) Q

 6=
 ( ()) if he

submits  is:

(1− )

Z 



Y
 6=

 ( (; )) 
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and if he submits  (; ):

 ( −  (; ))
Y
 6=

 ( ( (; ) ; ))

+ (1− )

Z (;)



( −max ( )) 
Y
 6=

 ( (; ))

= ( −  (; ))
Y
 6=

 ( ( (; ) ; )) + (1− )

Z (;)



Y
 6=

 ( (; )) .

Consequently, we must have:

( −  (; ))
Y
 6=

 ( ( (; ) ; ))

=

Z 

(;)

Y
 6=

 ( ( (; ) ; )) 

≥ (1− )

Z 

(;)

Y
 6=

 ( (; )) .

and then:

 (− )

≥ 

Z 

(;)

Y
 6=

 ( (; )) 

≥
Z 

(;)

ÃY
 6=

 ( (; ))−
Y
 6=

 ( ( (; ) ; ))

!


≥ 0. (A2.4)

Let ( )≥1 be a sequence tending towards ( 0) with  in ( ]

and such that   0, for all . Suppose  (; ) does not tend towards .

Extracting a subsequence if necessary, we may assume that it tends towards

0 6= . As  (; ) ≤ , we must have 
0  . From (A2.4) applied to
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( ), we have:

 (− )

≥
Z 

(;)

ÃY
 6=

 ( (; ))−
Y
 6=

 ( ( (; ) ; ))

!


≥
Y
 6=1

 ( ( (; ) ; ))

Z 

(;)

(1 (1 (; ))− 1 (1 ( (; ) ; ))) 

≥
Y
 6=1

 ( (; ))

Z 

(;)

(1 (1 (; ))− 1 (1 ( (; ) ; ))) .

Making  tends towards +∞ and using the joint continuity of  (; ), we

find: Y
 6=1

 (
0)
Z 

0
(1 ()− 1 (

0))  = 0,

which is possible only if  = ,  ≥ 3, and 0 = . Actually, this also is

impossible as bidder ’s payoff would tend towards zero in this case (while if

he bid his value, his payoff (1− )
R 


Q
 6=

 ( (; ))  would be at least

(1− )
R 


Q
 6=

 () , which would approach
R 


Q
 6=

 ()   0). We have

proved that  (; ) is continuous at (; 0) jointly in (; ), for all   .

Continuity at (; 0) is proved as for 1, that is:  ≤  (; ) ≤  implies that

 (; ) tends towards  if (; ) tends towards (; 0).

The continuity of  is proved similarly. Assume ( ) tends towards

( 0) with  in ( ]. Suppose  (; ) does not tend towards . Extracting

a subsequence if necessary, we may assume that it tends towards 0 6= . As

 (; ) ≥ , we must have 
0  . From (A2.4) applied to ( (; )  ),
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we have:

 (− )

≥
Z (;)

((;);)

ÃY
 6=

 ( (; ))−
Y
 6=

 ( ( ( (; ) ; ) ; ))

!


≥
Z (;)



ÃY
 6=

 ( (; ))−
Y
 6=

 ( (; ))

!


≥
Y
 6=1

 ( (; ))

Z (;)



(1 (1 (; ))− 1 (1 (; ))) 

≥
Y
 6=1

 ()

Z (;)



(1 (1 (; ))− 1 (1 (; ))) ,

where we used the inequality  ( (; ) ; ) ≤  and the nonnegativity of

the integrand. Making  tends towards +∞ and using the local uniformity

of the convergence of 1 (; ) towards , we find:

Y
 6=1

 ()

Z 0



ÃY
 6=

 ()−
Y
 6=

 (
0)

!
 = 0,

which is impossible as   .

Let (; )≥1 be a sequence converging towards (; 0). If  (; ) did not

converge towards towards , there would exist a subsequence  (; ) con-

verging towards   . Fromwhat we have just proved,  ( (; ) ; ) =

 would converge towards , a contradiction. Consequently,  is also con-

tinuous at (; 0).

At this point, the joint continuity of  at all (; ) for all   is imme-

diate. ||

Lemma A2—Technical lemma: Let  be a continuous function over

[ ] that is continuous differentiable and strictly positive over ( ] with a
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strictly positive derivative  over this semi-open interval. Then:

(i) For all  in ( ], we have:

lim
→+∞



Z 



µ
 ()

 ()

¶

 =
 ()

 ()
.

(ii) For all  in ( ], we have:

lim
→+∞

Z 



µ
 ()

 ()

¶

 = 0,

and the convergence is uniform in  over any interval [+  ], with   0.

(iii) If  is twice continuously differentiable over ( ], then the

convergence in (i) is uniform in  over any interval [+  ], with   0.

(iv) If  is twice continuously differentiable and strictly positive over

[ ] and if  ()  0, then the convergence in (i) is uniform in  over ( ].

(v) If  is log-concave over an interval [ + ], with   0,  () =

0, and the elasticity  of  with respect to  is bounded from below, then the

convergence in (i) is uniform in  over ( ].

Proof:

Proof of (i): For all  in ( ] and all   0, we obviously have:



Z 



µ
 ()

 ()

¶



=

Z 



 ()

 ()


µ
 ()

 ()

¶

,

and consequently
()
()

is integrable for
³
()
()

´
over [ ]. The equality in

(i) then follows from the weak convergence of
³
()
()

´
towards the degenerate

distribution  concentrated at  when  tends towards +∞.
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Proof of (ii): The first statement in (ii) is an immediate consequence of

(i). Consider then an interval [+  ] with   0. Let  be an arbitrary

strictly positive number. From the convergence at the extremities  + 

and , there exists 0 such that max
µR +



³
()
(+)

´


R 


³
()
()

´


¶
 ,

for all   0. Let  be the maximum over the interval [+  ] of the

strictly positive and continuous function  ()  (). Consider any  such

that   max (0). Then,

max
∈[+]

Z 



µ
 ()

 ()

¶

  .

This is obvious if the maximum is reached at one of the extremities of the

interval. Assume then that the maximum is reached at ∗ in the interior of

the interval. In this case, the FOC is:

1− 

R ∗


 () 

 (∗)
 (∗)
 (∗)

= 0,

and consequently:

max
∈[+]

Z 



µ
 ()

 ()

¶



=

R ∗


 () 

 (∗)

=
 (∗)
 (∗)

≤ 


 .

Proof of (iii): The proof is similar to the proof of (ii). Consider

an arbitrary interval [+  ], with   0, and strictly positive number .

From the convergence at the extremities + and , there exists 00 such that
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max

µ¯̄̄̄

R +


³
()
(+)

´
 − (+)

(+)

¯̄̄̄

¯̄̄

R 

 ()  − ()

()

¯̄̄¶
 , for all  

00. Let  be the maximum over the interval [+  ] of

¯̄̄̄



³
()
()

´2 ¯̄̄̄
2.

Consider any  such that   max (00). Then,

max
∈[+]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯  .

This is obvious if the maximum is reached at one of the extremities of the

interval. Assume then that the maximum is reached at ∗ in the interior of

the interval. In this case, the FOC is:

 − 

R ∗


 () 

 (∗)
 (∗) 
 (∗)

− 



 (∗)
 (∗)

= 0,

or, equivalently:



R ∗


 () 

 (∗)
=

 (∗)
 (∗)

µ
1− 1







 (∗)
 (∗)

¶
.

Consequently:

max
∈[+]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯

=

¯̄̄̄
¯
Z ∗



µ
 ()

 ()

¶

 −  (∗)
 (∗)

¯̄̄̄
¯

=

¯̄̄̄
1



 (∗)
 (∗)





 (∗)
 (∗)

¯̄̄̄
≤ 


 .

Proof of (iv): Extend as a strictly positive and twice continuously dif-
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ferentiable function with strictly positive derivative over an interval [−  ]

where   0. Then, for  ≥ , we have:¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯

≤
¯̄̄̄
¯
Z −2

−

µ
 ()

 ()

¶



¯̄̄̄
¯+

¯̄̄̄
¯
Z 

−2

µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯ ,

and consequently:

max
∈[]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯

≤ 

µ
 (− 2)

 ()

¶

+ max
∈[]

¯̄̄̄
¯
Z 

−2

µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯ .

From (iii), the second term in the RHS above tends towards zero. As the

first term obviously also tends towards zero, (iv) follows.

Proof of (v): Let  be an arbitrary strictly positive number. From the

convergence at , there exists 000 such that
¯̄̄

R 

 ()  − ()

()

¯̄̄
 , for all

  000. Let  be the maximum over the interval [ ] of

¯̄̄̄



³
()
()

´2 ¯̄̄̄
2.

We have   +∞. Indeed, as  ()  () = 1 

ln () is nondecreasing

in an interval [ + ] and tends towards 0 when  tends towards , we have



³
()
()

´2
≥ 0 over this interval. Furthermore, we have:





µ
 ()

 ()

¶2
= 2

µ
 ()

 ()

¶µ
1−  ln  ()

 ln ()

¶
≤ 2 (1 +)

µ
 ()

 ()

¶
,
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with − ≤ 0 a lower bound of  () =  ln ()
 ln()

.

Consider then any  such that   max (000). Then,

max
∈[]

¯̄̄̄
¯
Z 



µ
 ()

 ()

¶

 −  ()

 ()

¯̄̄̄
¯  .

From the definition of 000, the inequality holds true if the maximum is reached

at . The inequality is obviously satisfied if the maximum on the LHS is

zero. We may thus that it is strictly positive and, hence, that it is not

reached at  = . The rest of the proof then proceeds as in the proof of (iii)

above. ||

Appendix 3

Proof of Lemma 1:

(i) follows Lemma A1.

Extend 1 2 (for example, linearly) as continuously differentiable and

strictly positive functions over ( + 2), with   0. Finally, use the

same formula in the definition to extend  (; ) to ( + 2) × (−2 0 2 0),
where  0  0. As the partial derivatives will be continuous over ( + 2)×
(−2 0 2 0), the extension will be continuously differentiable over this prod-
uct.

From the definition, 0 (; ) is equal to 1−  ()
−2 


 (). From our

assumptions (in particular of local log-concavity at ), 

 () is bounded

from above and consequently there exists 0     0 such that 0 (; ) is

strictly above −
+− , which belongs to (0 1), over ( + )× (− ).

From the definition also, 

 (; ) is equal to  ()

−1
, which is bounded

from above.

As  (; ) =  and 0 (; ) is strictly above
−

+− over ( + ) ×
(− ),  (; ) is a strictly increasing function over ( + ) such that

 (+ ; )  , for all  in (− ). (ii) is proved.
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We then have 
¡
−1 (; ) ; 

¢
= , for all ( ) in ( ]× (− ). For

all such ( ), the implicit function theorem implies that 

−1 (; ) exists

and is equal to − 


¡
−1 (; ) ; 

¢
0
¡
−1 (; ) ; 

¢
. (iii) follows. ||

Proof of Lemma 3:

Proof of (i): Follows directly from the definition of  ().

Proof of (ii): From Lemma 1 (ii), for all  = 1 2, 0 (; ) tends towards

one uniformly for  in any compact subinterval of ( ]. As, from Lemma 1

(ii),  (; ) tends towards  for all ,
¡
−1
¢0
(; ) = 10

¡
−1 (; ) ; 

¢
tends

towards one and −1 (; ) tends towards  uniformly in  ∈ [  (; )], for
all   37. As 2 ([  ()] ; ) ⊆ [ 1 (; )], −11 (2 (; ) ; ) tends towards

 and its derivative tends towards one uniformly over any interval [  ()].

(ii) then follows from the definition of Ψ (; ).

Proof of (iii): That Φ (; ) tends to Λ uniformly over any compact

subinterval of (ln1 ()  0) follows directly from Theorem 2 (iii) and the

definitions of Φ (; ) and Λ. With a reserve price   , Theorem 2 (iii) and

the compactness of [ ] implies that Φ (; ) tends to Λ uniformly over [ ].

Let  be an arbitrary compact subinterval of (ln1 ()  0). We prove

first the uniform convergence over  of the derivative Φ0 (; ) towards the

derivative  of Λ. From the compactness of , it suffices to prove:

lim
()→(0)

Φ0 (; ) = ,

for all  in . Let − be such that ln1 ()  −  min.

Suppose there exists  in  such that lim()→(0)Φ0 (; ) 6= . Then,

there exists   0 and a sequence (; )≥1 converging towards (; 0) such

that:

|Φ0 (; )− |  . (A3.1)

37That is, for all  and for all   0, there exists 0  0 such that¯̄̄¡
−1

¢0
(; )− 1

¯̄̄
,
¯̄
−1 (; )− 

¯̄ ≤ , for all 0    0 and  in [  (; )].
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From (i), (ii) above and because the left-hand derivative Ψ0
 (; ) is zero to

the right of ln1 ( ()), there exists 
0  0 and  such that max  − 

0 and for all   0:

|Ψ0 (; )− |  2, (A3.2)

for all  in [−−], and

Ψ0
 (; )   + 2,

for all  in [− 0]. As the limit  of ()≥1 belongs to  and hence to the

interior of [−−], we may assume that ()≥1 is included in [−−].
We divide the rest of the proof in four parts.

(a) In (a) and in (b) below, we suppose that lim→+∞Φ
0 (; )  −

. Extracting a subsequence if necessary, we may assume lim→+∞Φ0 (; ) 

 − . There then exists ∗  0, which we may assume larger than 0, such

that:

Φ0 (; )   − ,

for all   ∗.

Here in (a), we consider the case where there exists a subsequence ()≥1
such that  ≥ ∗ and Φ ( ; ) ≤ Ψ ( ; ), for all  ≥ 1. Extracting

a subsequence again if necessary, we may assume that this the case of the

original sequence. For all  ≥ ∗, as, from (A3.1) and (A3.2), Φ0 (; ) 

Ψ0 (; ), there exists   0, such that Φ (; )  Ψ (; ), for all  in

(  + ). From Lemma 2 (iv), as Φ (; ), being belowΨ (; ), is concave

over (  + ), we have Φ
0 (; )   − , for all  in (  + ). As long

as it remains strictly below Ψ (; ), Φ (; ) will remain strictly concave

and its derivative will decrease and therefore will remain smaller than  − 

if  increases. As, from (A3.2), Ψ0 (; )  − 2, Φ (; ) will never meet

again Ψ (; ) to the right of . Consequently, for all  ≥ ∗, Φ (; ) is

strictly concave over (−) and Φ0 (; )   −  over this interval. As
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 tends towards   −, for all  large enough   (−) 2 and hence

Φ0 (; )  −  over ((−) 2−). The different functions are then as
in Figure 6 below.

6
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¶
¶

,
,
,
,,

  − 

− −

12(2)

11(()) 0

 = 11(1)

Φ(; )

Ψ(; )

Λ
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FIGURE 6: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not larger than Ψ (; ).

For all  large enough, we then have:Z −

(−)2
Φ0 (; )   (−−) ( − ) 2.

However, Φ (; ) tends towards Λ and consequently we also have:

lim
→+∞

Z −

(−)2
Φ0 (; ) 

= lim
→+∞

(Φ (−; )−Φ ((−) 2; ))

= Λ (−)− Λ ((−) 2)

=  (−−) 2,

and we obtain a contradiction.

(b) We consider next the case where there exists a subsequence

()≥1 such that  ≥ ∗ and Φ ( ; )  Ψ ( ; ), for all  ≥ 1. Ex-

tracting a subsequence if necessary, we may again assume that this holds

true for the original sequence. From Lemma 2 (iv), as long as it remains

strictly above Ψ (; ), Φ (; ) will remain strictly convex and its derivative

will decrease and therefore will remain smaller than −  if  decreases. As,

from (A3.2), Ψ0 (; )  − 2, Φ (; ) will never meet Ψ (; ) to the left

of . Consequently, for all  ≥ ∗, Φ (; ) is strictly convex over (− )

and Φ0 (; )   −  over this interval. As  converges towards , for all 

large enough Φ (; ) is strictly convex over
¡− −

2

¢
and Φ0 (; )  −

over this interval. The configuration of the graphs are as in Figure 7 below.
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− −

12(2)

11(()) 0
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Λ

FIGURE 7: Ruling out Φ0 (; ) further below  than Ψ0 (; ) is while Φ (; )

is not smaller than Ψ (; ).

For all such , we then have:Z (−)2

−
Φ0 (; )   (+) ( − ) 2.
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However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. As (a) and (b) exhaust all possibilities, we

have ruled out lim→+∞Φ
0 (; )   − .

(c) Here and in (d) below, we suppose that lim→+∞Φ0 (; )  +.

As above, we may assume that38 lim→+∞Φ0 (; )   + . Consequently,

there exists ∗  0, which we may assume larger than 0 such that:

Φ0 (; )   + ,

for all   ∗.

We show that, for all   ∗, Φ (; )  Ψ (; ). Suppose there exists

  ∗ such that Φ (; ) ≥ Ψ (; ). As Φ
0 (; )  Ψ0 (; ), there exists

  0 such that Φ (; )  Ψ (; ), for all  in (  + ). From Lemma

2 (iv), Φ (; ) is convex over (  + ), and we have Φ
0 (; )   + , for

all  in (  + ). As long as it remains strictly above Ψ (; ), Φ (; )

will remain strictly convex and its derivative will increase and therefore will

remain larger than  +  if  increases. As Ψ0 (; )   + 2, Φ (; )

will never meet again Ψ (; ) and therefore will stay strictly above it to

the right of . See Figure 4 in the main text. However, this contradicts

Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

(d) From (c), Φ (; )  Ψ (; ), for all   ∗. As long as it

remains strictly below Ψ (; ), Φ (; ) will remain strictly concave and its

derivative will increase and therefore will remain larger than  +  if  de-

38This limit may be infinite.
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creases. As, from (A3.2), Ψ0 (; )  +2, Φ (; ) will never meetΨ (; )

to the left of . Consequently, for all  ≥ ∗, Φ (; ) is strictly concave over

(− ) and Φ0 (; )   +  over this interval. As  converges towards

, for all  large enough Φ (; ) is strictly concave over (− (−) 2)

and Φ0 (; )  +  over this interval. See Figure 5 in the main text for an

illustration of this case.

For all  large enough, we then have:Z (−)2

−
Φ0 (; )   (+) ( + ) 2.

However, we also have:

lim
→+∞

Z (−)2

−
Φ0 (; ) 

= lim
→+∞

(Φ ((−) 2; )−Φ (− ; ))
= Λ ((−) 2)− Λ (−)
=  (+) 2,

and we obtain a contradiction. We have ruled out lim→+∞Φ0 (; )  + 

and completed the proof of (iii).

Proof of (iv): Suppose lim(;)→(0;0)Φ0 (; )  . There then exist   0

and a sequence (; )≥1 tending towards (0; 0) and such that Φ
0 (; ) 

+ , for all . We may assume that ()≥1 is included in a compact interval

[− 0]. As in the proof of (iii) above, from (i) and (ii) there exists ∗, such

that Ψ0
 (; )   + 2,for all   ∗ and  in [− 0].

As in part (c) of the proof of (iii) above, we can rule out Φ (; ) ≥
Ψ (; ) for some   ∗. We may then assume Φ (; )  Ψ (; ), for

all   ∗. For any   ∗, as longs as Φ (; ) does not meet Ψ (; )

it will remain strictly concave and therefore its derivative will increase and

hence will be larger than +  if  decreases within [− 0]. However, from
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Ψ0 (; )  + 2, Φ (; ) will never meet Ψ (; ) to the left of  within

[− 0]. Consequently, Φ0 (− ; )  + , for all   ∗. This contradicts

(iii) and we have proved (iv).

Proof of (v):

(a) Assume the elasticity 1 is bounded from below. Differentiating

the definition of Ψ, it is straightforward to find the following expression:

Ψ0 (; )

=
2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

1 +  − 1 (exp )

1 +  − 2 (expΨ (; ))
, (A3.4)

where  () is the elasticity of the density  with respect to the cumulative

probability . From our assumption of local log-concavity and the conver-

gence, from (ii), of Ψ (; ) towards Λ (), there exists   0 such that 2 is

log-concave and hence 2 ≤ 1 over
£
 −12 (expΨ (; ))

¤
. From Lemma 2

(i), −12 (expΨ (; )) ≥ −11 (exp ). Consequently, for all   , we have:

2
¡
−12 (expΨ (; ))

¢
exp 

1
¡
−11 (exp )

¢
expΨ (; )

≤ 2
¡
−11 (exp )

¢
exp 

1
¡
−11 (exp )

¢
2

−1
1 (exp )

= ,

where the equality follows from 2 = 1. From (A3.4) and 2 ≤ 1, we then
find, for all   :

Ψ0 (; )

≤  (1 +  − 1 (exp ))

≤  (1 +  + ) ,
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with − the lower bound of 1. The inequality lim(;)→(−∞;0)Ψ0 (; ) ≤ 

follows.

(b) Assume    and 1 is bounded from below. We will prove

lim→0 sup∈R− Φ
0 (; ) ≤ . This will obviously imply (v). First, note

Φ0 (0; ) = 1, for all . Let  be an arbitrary strictly positive number.

From (ii) and part (a) above of the current proof, there exists 0 such that

Ψ0 (; )   + 2, for all 0    0 and all  in (−∞ 0).

Suppose there exists  in (−∞ 0) and   0 such that Φ0 (; ) 

 + . Assume first Φ (; ) ≤ Ψ (; ). Then, proceeding as in the

proofs above, Φ (; ) remains concave and below Ψ (; ) and Φ0 (; ) re-

mains above  +  everywhere to the left of . Consequently, there exists 

in (− (Φ (; )− Λ ())  ) such that Φ (; ) = Λ (). This contradicts

Lemma 2 (iii).

Suppose next Φ (; )  Ψ (; ). Then, Φ (; ) remains strictly convex

and strictly above Ψ (; ) everywhere to the right of . However, this

contradicts Φ (ln1 ( ()) ; )  0 = Ψ (ln1 ( ()) ; ).

We have proved sup∈R− Φ
0 (; ) ≤ + , for all   0, and consequently

lim→0 sup∈R− Φ
0 (; ) ≤  + . As  was arbitrary, the result follows. ||

Appendix 4

Proof of Theorem 3:

Proof of (i):

(a) For all  in (ln1 ()  0), the first equality below follows from

Lemma 3 (iii):



= lim
()→(0)

Φ0 (; )

= lim
()→(0)

 ( (−1 (exp ) ; ))
 ( (−1 (exp ) ; ))

exp 

 (−1 (exp ))
0
¡
−1 (exp ) ; 

¢
=  lim

()→(0)
0
¡
−1 (exp ) ; 

¢
.
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The second equality follows from the definition of Φ and the third from the

joint continuity, according to Theorem 2 (iii), of  (; ). Consequently,

lim()→(0) 0 (−1 (exp ) ; ), or equivalently lim()→(0) 0 (; ), where

 = −1 (exp) ∈ ( ), exists and is equal to 1.
(b) Let  be in ( ). From Corollary 1 (ii), we have 1 (; ) =

− R 


³
2((;))
2((;))

´1
, for all  in ( ). Differentiating this equation, we

find:

01 (; ) =
1



Z 



µ
2 ( (; ))

2 ( (; ))

¶1


2 ( (; ))

2 ( (; ))
0 (; )

=
1



Z 



µ
2 ( (; ))

2 ( (; ))

¶1


2 ( (; ))

2 ( (; ))
0 (; )

+

Z 



2 ( (; ))

0 (; ) 2 ( (; ))


µ
2 ( (; ))

2 ( (; ))

¶1
2 ( (; ))

2 ( (; ))
0 (; ) , (A4.1)

where  is a fixed number strictly between  and . The first term in the

RHS of the last equality above tends towards zero if (; ) tends towards

(; 0). In fact, we have:

0 ≤ 1


Z 



µ
2 ( (; ))

2 ( (; ))

¶1


2 ( (; ))

2 ( (; ))
0 (; ) ≤ 1



µ
2 ( (; ))

2 ( (; ))

¶1
2 ( (; ))

2 ( (; ))
0 (; ) ,

and, from Theorem 2 (iii) and what we have just proved in (a) above,  (; )

and 0 (; ) are jointly continuous in (; ) at (; 0).

We may consider
³
2((;))
2((;))

´1
in the second term as a probability dis-

tribution over the couples (; ) that is the product of two distributions: the

distribution over [ ] whose cumulative function is
³
2((;))
2((;))

´1
and hence

that has a mass point at ; and the degenerate distribution at . That is,
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the second term is

Z Z
(]×[01]

2((;))
0(;)2((;))



µ³
2((;))
2((;))

´1
× {} ()

¶
. As

(; ) tends towards (; 0), this product distribution tends weakly towards

the distribution concentrated at (; 0). From Theorem 2 (iii) and (a) above,

the integrand is a continuous function of (; ). Consequently, we have:

lim
(;)→(;0)

Z 



2 ( (; ))

0 (; ) 2 ( (; ))


µ
2 ( (; ))

2 ( (; ))

¶1
=

2 ()

2 ()
.

(A4.1) then implies lim(;)→(;0) 01 (; ) = 1, for all  in ( ).

(c) Let  be in ( ). For all  and all e such that   e   (; ),

we obviously have 01
³e; ´ = 101 ³1 ³e; ´ ; ´  (b) above then implies

lim(;)→(;0) 01
³e; ´ = 1. From the identity 2

³e; ´ = 
³
1

³e; ´ ; ´,
we have 02

³e; ´ = 0
³
1

³e; ´ ; ´01 ³e; ´ and consequently lim(;)→(;0) 02 ³e; ´ =
1. Finally, from 02 (; ) = 1

0
2 (2 (; ) ; ), for all  in ( ) and , we

have lim(;)→(;0) 
0
2 (; ) = 1, for all  in ( ).

Proof of (ii): The proof of (ii) from Lemma 3 (iv) is similar to (a) in

the proof of (i) above.

Proof of (iii): Proceeding again as in (a) in the proof of (i) above, (iii)

is an immediate consequence of Lemma 3 (v). ||

Proof of Theorem 4:

Proof of (i): Let  be in ( ). From (7), we have ( (; )− )  =

 ( (; )) 
¡
 ( (; ))

0
 (; )

¢
, for all  close enough to  and all 

small enough. Letting (; ) tend towards (; 0) and using Theorem 3 (i)

and Theorem 2 (iii), we find the statement in (i) about .

We have (−  (; ))  = ( ( (; ) ; )−  (; )) , for all  close
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enough to  and  small enough. The statement in (i) about  then follows

from the statement about  and from Theorem 2 (iii).

From (9), we have:

 (; )− 



=
− 1 (; )



½
 ln2 ( (; ))

 ln1 ()
− 1
¾

(A4.2)

=
− 1 (; )



½
0 (; )

1 ( (; ))1 ()

1 ( (; )) 1 ()
− 1
¾
. (A4.3)

Letting (; ) tend towards (; 0) and using the statement about 1 and

Theorem 3 (i) and Theorem 2 (iii), we obtain the statement in (i) about .

Proof of (ii): Let  and  be arbitrary strictly positive numbers. From

(A4.3), (i) above, Theorem 2 (i), Theorem 3 (i, ii), and the compactness of

[ +  ], there exists 0  0 such that for all 0    0 and  in [ +  ],

we have:

 (; )− 



≤
µ
1 ()

1 ()
+ 

¶
( − 1 + )

≤ 1 ()

1 ()
( − 1) + max (  − 1 + ) ,

where is the maximum of 11. Consequently, lim→0 sup∈[+]
³
(;)−


− ( − 1) 1()

1()

´
≤ max (  − 1 + ) and the first statement in (ii) follows by making  tend

towards zero.

The proof of the second statement proceeds from (A4.2) along similar

lines and makes use of Theorem 2 (i) and Theorem 3 (iii).

Proof of (iii): From Corollary 1 (iii), bidder 1 bids more aggressively

and the differences ∆ () and ∆ () between the expected revenues
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and total surpluses from the 2—k-PA and the SPA are as follows:

∆ () =

Z 



Z (1;)

1

(1 (1)− 2 (2)) 2 (2) 1 (1)

∆ () =

Z 



Z (1;)

1

(1 − 2) 2 (2) 1 (1) .

The rate of change of the expected revenues can then be written as:

∆ ()


=

Z 



1



Z (1;)

1

∆ (1 2) 21, (A4.4)

where:

∆ (1 2)

= (1 (1)− 2 (2)) 2 (2) 1 (1)

= (11 (1)− (1− 1 (1))) 2 (2)

− (22 (2)− (1− 2 (2))) 1 (1) .

Because the densities 1 2 are continuous over [ ], so is the difference

∆ (1 2) over [ ]
2
. Let  be the maximum of |∆ (1 2)| over this square.

From (ii) above, there exists 0  0 such that, for all 0    0 and all 

in ( ), we have: 0 ≤ ( (; )− )  ≤ 1 + (( − 1)1 ()) 1 (). As

1 () 1 () is bounded, there exists  such that 0 ≤ ( (; )− )  ≤ ,

for all  in [ ] and 0    0. For all 0    0, we then have for all 1
in [ ]: ¯̄̄̄

¯1
Z (1;)

1

∆ (1 2) 2

¯̄̄̄
¯ ≤ 

µ
 (1; )− 1



¶
≤ ,

and the integrand in the RHS of (A4.4) is bounded.
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From the previous paragraph, if we can find the almost everywhere point-

wise limit of the integrand of (A4.4) we will be entitled to apply the Lebesgue

dominated convergence theorem. Let 1 be in ( ). The integrand of (A4.4)

at 1 can be rewritten as:

1



Z (1;)

1

∆ (1 2) 2

=
 (1; )− 1


∆ (1 1)

+
1



Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2.

Let  be an arbitrary strictly positive number. By continuity of ∆ (1 2)

over [ ]2, there exists   0 such that |∆ (1 2)−∆ (1 1)|   for all

2 such that |1 − 2|  . From Theorem 2 (iii), there exists 00, which

we may assume smaller than 0, such that, for all 0    00, we have

 (1; )− 1  . We then obtain:¯̄̄̄
¯1
Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2

¯̄̄̄
¯

≤ 

µ
 (1; )− 1



¶
≤ ,

for all 0    00. As  was arbitrary, we have proved

lim
→+∞

1



Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2 = 0.

From (ii) above, we also have lim→+∞
(1;)−1


= −1



1(1)
1(1)

and we have
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proved:

lim
→+∞

1



Z (1;)

1

∆ (1 2) 2

=
 − 1


1 (1)

1 (1)
∆ (1 1)

=
 − 1

(1 (1)− 2 (1))1 (1) 2 (1)

= ( − 1) ¡−12 (1)− −11 (1)
¢
1 (1)


1 (1)

From the Lebesgue theorem of dominated convergence, 

 (0) = lim→0

∆()


exists and (11) holds true. That 

 (0) exists and satisfies (12) can be

proved similarly. If 1 2 are different, we have   1 and −12  −11 over

( ). The strict positivity of 

 (0) follows from (11).

Proof of (iv): Here, we have:

∆ ()


=

Z 



1



Z (1;)

1

∆ (1 2) 21. (A4.5)

If  = 1, that is, if the distributions 1 2 are identical, all 2—k-PA’s and

the SPA give the same expected revenues, 

 (0) exists and is equal to

zero, and the inequality in (iv) is immediate.

We may thus assume   1. In this case, 2 ()  1 (). Consequently,

there exists   0 such that 2 (2)  1 (1), for all (1 2) ∈ (  + )2.

From the uniform convergence over [ ] of  (; ) towards the identity func-

tion (see Theorem 2 (iii)), there exists 0  0 such that, for all 0    0 and

 in [  + 2]: 0 ≤  (; )−  2 and hence 0 ≤ − ≤  (; )−  ,

for all  in [  (; )]. From (A4.5), we then have, for all 0    0 and
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0    2:

∆ ()



=

Z +



1



Z (1;)

1

∆ (1 2) 21

+

Z 

+

1



Z (1;)

1

∆ (1 2) 21

≥
Z 

+

1



Z (1;)

1

∆ (1 2) 21. (A4.6)

By continuity of 1 and 2, the maximum of |∆ (1 2)| over [ ]2 exists
and is finite. Let  be this maximum. From the bound (ii) above on the

rate of convergence of  (; ), there exists 00  0, which we may assume

smaller than 0, such that, for all 0    00, we have 0 ≤ (1;)−1


≤
( − 1)max∈[]  ()()

+ 1, for all 1 in [ +  ]. We then have, for all

0    00:¯̄̄̄
¯1
Z (1;)

1

∆ (1 2) 2

¯̄̄̄
¯ ≤ 

µ
 (1; )− 1



¶
≤ 

µ
( − 1) max

∈[]
 ()

 ()
+ 1

¶
Assume that 0    00. The integral in the RHS of (A4.6) therefore

satisfies the assumptions of the Lebesgue dominated convergence theorem.

Furthermore, for all  in ( ), we have:

1



Z (1;)

1

∆ (1 2) 2

=
 (1; )− 1


∆ (1 1)

+
1



Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2.
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Let  be an arbitrary strictly positive number. By uniform continuity of

∆ (1 2) over [ ]
2
, there exists   0 such that |∆ (1 2)−∆ (1 1)|  

for all (1 2) in that are such that |1 − 2|  . From the continuity with

respect to (; ) of  (; ) at (1; 0) and the compactness of [ +  ], there

exists 000 such that for all 0    000  00 and all 1 in [ +  ], we have

 (1; )− 1  . From now on, we assume   000. We then have:¯̄̄̄
¯1
Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2

¯̄̄̄
¯

≤ 

µ
 (1; )− 1



¶
≤ 

µ
( − 1) max

∈[]
 ()

 ()
+ 1

¶
.

As  was arbitrary, we have:

lim
→+∞

1



Z (1;)

1

(∆ (1 2)−∆ (1 1)) 2 = 0.

From the previous result (i) above on the rate of convergence of  (; ),

we have lim→+∞
(1;)−1


= −1



1(1)
1(1)

, for all 1 in ( ). From the Lebesgue

Theorem of dominated convergence, we then find:

lim
→+∞

Z 

+

1



Z (1;)

1

∆ (1 2) 21

=

Z 

+

 − 1


1 (1)

1 (1)
∆ (1 1) 1.
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and, from (A4.6):

+


 (0)

= lim→0
∆ ()



≥
Z 

+

 − 1


1 (1)

1 (1)
∆ (1 1) 1.

As  was an arbitrary strictly positive number smaller than 2, this implies:

+


 (0) ≥

Z 



 − 1


1 (1)

1 (1)
∆ (1 1) 1. (A4.7)

Notice that since 2 ()  1 (), for all  in ( ), the integral in (A4.7) is

strictly positive. ||

Appendix 5

Proof of Theorem 6:

Proof of (i): It follows directly from Theorem 4 (i) and the previous

theorem. For example, from Theorem 4 (i), we have lim(;)→(;0) (;)−
=e (e)−1. However, through the change of variables e = +−, e = +−,

we have e

³e; ´ − e =  −  (), e (e) = ()() = ()

1−() =  () and the

result follows. The second inequality is proved similarly.

From Theorem 4 (i), we have lim()→(0) (;)−
= −1


e2 (e)−1, wheree = e1e2 (as bidder 2 is the weak bidder for the transformed distributions).

Compounding this equality with the joint continuity of e−1 (e; ), from The-
orem 2, we find lim()→(0) −−1(;)

= −1

e2 (e)−1. The last statement of

(i) then follows by changing the variables as above.

Proof of (ii):

(a) From Theorem 4 (ii), we have
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lim→0max∈[]
³ −−1(;)


− ( − 1)e2 ¡e−1 (e; )¢−1´ ≤ 0, with e =e1e2, and, from the joint continuity of e−1 (e; ), we then have

lim→0max∈[]
³ −−1(;)


− ( − 1)e2 (e)−1´ ≤ 0. Changing the vari-

ables, we obtain lim→0max∈[]
³
(;)−


−  ( − 1)1 ()−1

´
≤ 0.

(b) As the expected payoff of either bidder with value  is the pre-

mium  ( ()− ) he receives, the differences ∆ () and ∆ () be-

tween the expected revenues and total surpluses from the AA and the SPA

are as follows:

∆ () =

Z 



Z (1;)

1

(1 (1)− 2 (2)) 2 (2) 1 (1)− 2 ( ()− ) ,

∆ () =

Z 



Z (1;)

1

(1 − 2) 2 (2) 1 (1) .

The rate of change of the expected revenues can then be written as:

∆ ()


=

Z 



1



Z (1;)

1

∆ (1 2) 21 − 2 ( ()− ) ,

where ∆ (1 2) is defined as in the proof of Theorem 4. From Theorem 2,

 () =  +  − e (; ) tends towards  as  tends towards zero. The rest

of the proof proceeds as the proof of Theorem 4 and appeals to (i) and (a)

above. ||
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