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A. Monopsony Resale

Our analysis translates easily to monopsony resale, where only the auction

loser may propose a resale price, not larger than his value. If the bidders’

(seller) virtual value functions vs+
Fs(vs)
fs(vs)

and vs+
Fs(vs)
fs(vs)

are strictly increasing,

the formula (2) for the equilibrium bidding functions under ND becomes:

βi (v) =

R Fi(v)
0

ρ (F−1w (q) , F−1s (q)) dq

Fi (v)
,

where, for vw ≤ vs, ρ (vw, vs) is the monopsony resale price offer from the

strong bidder with value vs to the weak bidder with value larger than vw.

The strong bidder after losing with his bid βs (vs) offers to buy at the price

r (βs (vs)) = ρ (F−1w (Fs (vs)) , vs).

Under FD, Step 1 of the randomization procedure produces the strong

bidder’s revised beliefs after observing a winning bid b ≥ βs (vs) as a condi-

tional distribution Fw (vw|b) with support [c, r (b)] such that the strong bidder
offers the same resale price as under ND1. At Step 2, the weak bidder is made

to randomize over [r−1 (vw) , βw (d)] in a way consistent with the same bid

marginal distribution as under ND and the strong bidder’s revised beliefs.

1Lemmas similar to Lemmas A1 and A2 hold true for monopsony resale. The statement
of Lemma A1 (ii), for example, becomes under monopsony resale: ∂r

∂vs
ρ (v, v) = 1

2 , for all
v in [c, d).

1



In our example above with uniform distributions, ρ (F−1w (q) , F−1s (q)) is

the corner solution 1 when q > 2/ (1 + d) and the equilibrium bidding func-

tions under ND are:

βw (v) = βs (dv)

=
1 + d

4
v, if 0 ≤ v ≤ 2

1 + d
;

= 1− 1

v (1 + d)
, if

2

1 + d
≤ v ≤ 1.

Under FD, the randomization procedure makes the weak bidder bid over

[vw/2, d/ (1 + d)] according to the conditional distribution below (see the

figure below):

Gw (b|vw)
= 1−

³vw
2b

´2/(d−1)
, if

vw
2
≤ b ≤ 1

2
;

= 1− v
2/(d−1)
w

d− 1
½
1 + d− 1

1− b

¾
, if

1

2
≤ b ≤ d

1 + d
.
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pp p pp p p p pp p p p p p pp p p p p p p p pp p p p p p p p p p pp p p p p p p p p p p p pp p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

B. N Bidders: Conditions for Equilibrium under ND

Assume βw, βs are strictly increasing and such that βw ≥ βs; βw (c) =

βs (c) = c; βw (d) = βs (d); and their inverses αw, αs are differentiable over

(c, d].

Denote πw the optimal resale price function when the potential buyer’s

value is distributed according to Fw, that is, for all u, v in [c, d]
2 such that

u ≤ v , πw (u, v) is the optimal resale price offer in [u, v] from a monopolist

with value u to a weak bidder with value not larger than v.

The optimal resale mechanism of a bidder with value v allocates the item

to the bidder with the highest conditional virtual value, if larger than v, at

the price equal to the smallest value at which he could have been allocated

the item.
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Derivative a Weak Bidder’s Payoff

The derivative of a weak bidder’s expected payoff at a bid b > βw (v) is:Z αw(b)

c

µ
π

µ
max

µ
v, u− Fw (αw (b))− Fw (u)

fw (u)

¶
, αs (b)

¶
− b

¶
dFw (u)

n−2 d

db
Fs (αs (b))

+

ZZ
(uw,us)∈[c,αw(b)]×[c,π(αw(b),αs(b))]⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ã

πw
³
max

³
v, uw − Fw(αw(b))−Fw(uw)

fw(uw)
, us − Fs(αs(b))−Fs(us)

fs(us)

´
, αw (b)

´
−b

!
d
³

Fw(uw)
Fw(αw(b))

´n−3
dFs (us)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
d

db
Fw (αw (b))

n−2

+(π (αw (b) , αs (b))− b) (Fs (αs (b))− Fs (π (αw (b) , αs (b))))
d

db
Fw (αw (b))

n−2

−Fw (αw (b))
n−2 Fs (αs (b)) .

The first term accounts for the event when the strong bidder’s value is

αs (b) and hence his virtual value conditional on the interval [c, αs (b)] is

also equal to αs (b). Since αs (b) ≥ αw (b), the weak bidder’s optimal re-

sale mechanism allocates the item to the strong bidder at the price equal

to π
³
max

³
v, u− Fw(αw(b))−Fw(u)

fw(u)

´
, αs (b)

´
, where u is the maximum of the

other weak bidders’ values. In fact, at this value, the strong bidder’s condi-

tional virtual value is just equal to max
³
v, u− Fw(αw(b))−Fw(u)

fw(u)

´
.

The second term accounts for the event when the highest value among

the other weak bidders’ is αw (b), also equal to the conditional virtual value,

and the strong bidder’s conditional virtual value is smaller than αw (b), that

is, his value is smaller than π (αw (b) , αs (b)). In this event, the weak bidder

with value αw (b) is allocated the item (since αw (b) ≥ v) at the price equal to

πw
³
max

³
v, uw − Fw(αw(b))−Fw(uw)

fw(uw)
, us − Fs(αs(b))−Fs(us)

fs(us)

´
, αw (b)

´
, where uw is

4



the maximum value among the other n−3 weak bidders and us is the strong
bidder’s value.

Finally, the event when the highest value among the other weak bidders’

is αw (b) and the strong bidder’s conditional virtual value is larger than αw (b)

gives the third term.

With similar interpretations, the derivative at b in (βs (v) , βw (v)) is:

(π (v, αs (b))− b)Fw (αw (b))
n−2 d

db
Fs (αs (b))

+

(
(v − b)Fs (π (v, αs (b)))

+ (π (v, αs (b))− b) (Fs (αs (b))− Fs (v))

)
d

db
Fw (αw (b))

n−2

−Fw (αw (b))
n−2 Fs (αs (b)) ;

and at b < βs (v):

(v − b)

(
Fw (αw (b))

n−2 d
db
Fs (αs (b))

+Fs (αs (b))
d
db
Fw (αw (b))

n−2

)
−Fw (αw (b))

n−2 Fs (αs (b)) .

Derivative of the Strong Bidder’s Payoff

The derivative of the strong bidder’s expected payoff at b < p−1 (v) is:

(p (b)− b)
d

db
Fw (αw (b))

n−1 − Fw (αw (b))
n−1 ;

at b in (p−1 (v) , βw (v)) :

(v − b)
d

db
Fw (αw (b))

n−1 − Fw (αw (b))
n−1 ;

5



and at b > βw (v):Z αw(b)

c

µ
πw

µ
max

µ
v, u− Fw (αw (b))− Fw (u)

fw (u)

¶
, αw (b)

¶
− b

¶
d

µ
Fw (u)

Fw (αw (b))

¶n−2
d

db
Fw (αw (b))

n−1

−Fw (αw (b))
n−1 .

Sufficiency of the Conditions

As in the FD regime, the conditions (8, 9) are sufficient because the

derivatives above are nondecreasing in the bidder’s value v and reduce to the

LHS’s of (8, 9) at the bid the strategy specifies, that is, when v = αw (b) for

a weak bidder and when v = αs (b) for the strong bidder.

C. N Bidders: Existence and Uniqueness of the Equilibrium

The system of differential equations (8, 9) is equivalent to the system

(C1, C2) below:

d

db
lnFs (αs (b))

=
1

p (b)− b⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1−
n− 2
n− 1

Ã
(αw (b)− b)Fs (p (b))

+ (p (b)− b) (Fs (αs (b))− Fs (p (b)))

!
(p (b)− b)Fs (αs (b))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ; (C1)

6



d

db
lnFw (αw (b)) =

1

(n− 1) (p (b)− b)
. (C2)

We have the proposition below:

Proposition: If

(a) Fs is twice continuously differentiable over (c, d], and such that d
dv

³
fs(v)(v−c)2

Fs(v)

´
≥

0 and d
dv

³
v − 1−Fs(v)

fs(v)

´
> 0, for all v > c;

(b) Fs
Fw
is nondecreasing;

(c) d
dv

Fs
Fw
(d) > 0;

then:

(i) (existence and uniqueness) There exists one and only one couple

of strictly increasing bidding functions βw, βs such that βw (c) = βs (c) =

c, βw (d) = βs (d), βw ≥ βs, and their inverses αw, αs satisfy (C1, C2).

(ii) (stochastically larger bid from the strong bidder) At the unique so-

lution (βw, βs) in (i),
Fs(αs(b))
Fw(αw(b))

is nondecreasing over (c, d].

Main Ideas of the Proof of the Proposition

The proof of the existence in (i) proceeds by studying the solution to

the system (C1, C2) with initial condition αw (d) = αs (d) = η, where η is

a parameter such that η < d. Because the system (properly rewritten) is

locally Lipschitz at such an initial condition, the standard theory of ordinary

differential equations applies and implies that any solution, where defined,

is strictly monotonic, and such that Fs(αs(b))
F (α(b))

is nondecreasing and αw ≤ αs.

Moreover, the functions αw, αs and the lower extremity b (η) of their largest

definition interval are monotonic with respect to η. We then prove that

there exist some values η of the parameter such that b (η) > c and others

such that b (η) < c. Finally, we show that there exists an intermediate value

of the parameter such that b (η) = c and the remaining boundary condition

7



αw (c) = αs (c) = c is satisfied. To this end, we rule out jumps, due to small

decreases of η, of the graphs of the functions αw, αs from common points

on the 45-degree line, where they end up when b (η) > c, to points to the

vertical of and away from (c, c).

To prove the uniqueness in (i), we transform the system (C1, C2) into a

differential system in ϕ = αsβw and βw. We then show that, if there existed

two solutions, the function ϕ that would correspond to the higher value of the

parameter η would be smaller. Then, the value βw (d), through its positive

relation with ϕ (obtained by integrating (C2)) would also be smaller, which

would contradict the initial condition βw (d) = η.

Proof of the Proposition

I. Technical Extension of the Function π:
For u ≤ v, π (u, v) is as defined in (3). For technical purposes, extend the

function π to [c, d]2, differently than in Subsection 6.2, by setting π (u, v) =
u+v
2
, for u > v. It is then easy to check that the so defined π is continuously

differentiable over (c, d]2. In fact, from assumption (a), (3) satisfies the

conditions of the implicit function theorem (the derivative with respect to π

of the RHS of (3) is strictly positive). Furthermore, the partial derivatives

of the solution π of (3) tend towards 1/2 when (v, w) tend towards towards

a couple on the 45-degree line. Since π is continuously differentiable, it is

also locally Lipschitz over (c, d]2.

Lemma C.1: ∂
∂u
π (u, v) is bounded away from zero over [c+ ε, d]2, for

all ε > 0.

Proof: For all (u, v) with u ≥ v, we have, by definition of the extension

of π, ∂
∂u
π (u, v) = 1

2
. From (3), we have, for u ≤ v:½

2 +
Fs (v)− Fs (π (u, v))

fs (π (u, v))
2 f 0s (π (u, v))

¾
∂

∂u
π (u, v) = 1.

8



If, furthermore, (u, v) ∈ [c+ ε, d]2, then π (u, v) ∈ [c+ ε, d]2. From the

equality above, we have:

∂

∂u
π (u, v) ≥ L (ε) > 0,

for all (u, v) in [c+ ε, d]2such that u ≤ v, with L (ε) defined as follows:

L (ε) =
1

2 +K (ε) /M (ε)
,

with:

K (ε) = max
v∈[c+ε,d]

f 0s (v)

M (ε) = min
v∈[c+ε,d]

fs (v) > 0.

||

II. Main Lemmas
Through the change of variables ψ1 = Fwαw, ψn = Fsαs, the system (C1,

9



C2) becomes the system below:

d

db
ψn (b)

=
ψn (b)

π (F−1w ψ1 (b) , F
−1
s ψ1 (b))− b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− n− 2
n− 1

⎛⎜⎝ (F−1w ψ1 (b)− b)Fs (π (F
−1
w ψ1 (b) , F

−1
s ψn (b)))+

(π (F−1w ψ1 (b) , F
−1
s ψn (b))− b)

(ψn (b)− Fs (π (F
−1
w ψ1 (b) , F

−1
s ψn (b))))

⎞⎟⎠
(π (F−1w ψ1 (b) , F

−1
s ψn (b))− b)ψn (b)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
;

d

db
ψ1 (b)

=
ψ1 (b)

(n− 1) (π (F−1w ψ1 (b) , F
−1
s ψn (b))− b)

.

By extending the functions F−1w , F−1s into locally Lipschitz functions over

(0, 1 + ε), where ε > 0, in such a way that 1−q
fs(F−1s (q))

is nonincreasing over this

interval, the assumptions of the theory of ordinary differential equations are

satisfied over the domain2. D = {(b, ψ1, ψn) |0 < ψ1, ψn ≤ 1, ρ (F−1ψ1 (b) , F−1s ψn (b)) > b}.
Consequently, for every η < d, there exists one and one solution in this do-

main.

Consider the extension (C3, C4) of the original system (C1, C2) over

the domain D =

(
(b, αw, αs) |

c < αw, αs ≤ d;π (αw, αs) > b

)
(the image of D by the

change of variables above), with initial condition (C5) below, where η is a

2The change of variables allows to apply the theory of ordinary differential equations
without making unnecessary Lipschitz assumptions on the density f .
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parameter such that η < d :

d

db
lnFs (αs (b))

=
1

π (αw (b) , αs (b))− b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1− n− 2

n− 1

⎛⎜⎝ (αw (b)− b)Fs (π (αw (b) , αs (b)))+

(π (αw (b) , αs (b))− b)

(Fs (γ (b))− Fs (π (αw (b) , αs (b))))

⎞⎟⎠
(π (αw (b) , αs (b))− b)Fs (αs (b))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; (C3)

d

db
lnFw (αw (b))

=
1

(n− 1) (π (αw (b) , αs (b))− b)
. (C4)

αw (η) = αs (η) = d. (C5)

It follows immediately from (C4) that d
db
αw (b) > 0, for all solution of

(C4, C5 in D. Moreover, at the initial condition, the derivative of γ is also

strictly positive. In fact, from (C3, C4) and π (d, d) = d:

d

db
lnFs (αs (b)) =

d

db
lnFw (αw (b)) =

1

(n− 1) (c− d)
.

We have proved Lemma C2 below.

Lemma C2: Let (αw, αs) be a solution of (C3-C5) in the domain D

defined over (b0, η]. Then, d
db
αw (b) > 0, for all b in (b0, η], and d

db
αs (η) >

0.

From Lemma C2, the solution to (C3-C5) is strictly increasing at η and

11



can be continued within D to the left of this point.

Lemma C3: Let (αw, αs) be a solution of (C3-C5) in the domain D

defined over (b0, η]. Since, from Lemma C2, d
db
αw (b) > 0, for all b in (b0, η],

the function ϕ below is well defined and differentiable:

ϕ = αsα
−1
w = αsβw,

where βw is the inverse of αw. Then, the inequality below holds true for all

v in (αw (b
0) , d]:

λ (v) ≤ ϕ (v) ;

where λ is defined as follows:

λ (v) = F−1s

µ
Fw (v) min

u∈[v,d]
Fs (u)

Fw (u)

¶
.

Proof: Let v be in (αw (b
0) , d), k be such that 0 < k < minu∈[v,d]

Fs(u)
Fw(u)

, and

let the function λk be defined as follows:

λk (u) = F−1s (kFw (u)) ,

for all u in (v, d]. From its definition and k < Fs(u)
Fw(u)

, for all u ≥ v, we have:

d

dv
lnFs (λk (u)) =

d

dv
lnFw (u)

λk (u) < u,

for all u ≥ v. In particular, λk (d) < d and, thus,

λk (d) < ϕ (d) .

The system (C3, C4) can be rewritten under a form similar to (8, 9)

12



with the weak bidder’s value v as the variable:

(π (v, ϕ (v))− βw (v))
d

dv
lnFs (ϕ (v)) +

(n− 2)
⎧⎨⎩ (v − βw (v))

Fs(π(v,ϕ(v)))
Fs(ϕ(v))

+

(π (v, ϕ (v))− βw (v))
h
1− Fs(π(v,ϕ(v)))

Fs(ϕ(v))

i ⎫⎬⎭ d

dv
lnFw (v)

=
d

dv
βw (v) , (C6)

(π (v, ϕ (v))− βw (v))
d

dv
lnFw (v) +

(n− 2)
⎧⎨⎩ (π (v, ϕ (v))− βw (v))

Fs(π(v,ϕ(v)))
Fs(ϕ(v))

+

(π (v, ϕ (v))− βw (v))
h
1− Fs(ρ(v,ϕ(v)))

Fs(ϕ(v))

i ⎫⎬⎭ d

dv
lnFw (v)

=
d

dv
βw (v) . (C7)

Suppose there exists u in (v, d] such that ϕ (u) = λk (u). Since λk (u) < u,

we have ϕ (u) < u and, consequently, π (ϕ (u) , u) < u (because min (v, w) <

π (v, w) < max (v, w), for all (v, w) such that v 6= w). From (C6) and

(C7), we then have d
dv
lnFs (ϕ (u)) <

d
dv
lnFw (u) and, since d

dv
lnFs (λk (u)) =

d
dv
lnFw (u), d

dv
lnFs (ϕ (u)) <

d
dv
lnFs (λk (u)).

From an (elementary) technical lemma, we obtain ϕ (v) ≥ F−1s (kFw (v)).

The result then follows by taking the limit for k tending towardsminw∈[v,d]
Fs(w)
Fw(w)

.

||

Lemma C4: Let (αw, αs) be a solution of (C3-C5) in D defined over

(b0, η]. Then, the inequality below holds true for all v in (αw (b
0) , d]:

v ≤ ϕ (v) ,

and

αw (b) ≤ αs (b) ,

13



for all b in (b0, η].

Proof: It suffices to apply the previous lemma and to notice that, under
our assumption of stochastic dominance (b), minw∈[v,d]

Fs(w)
Fw(w)

= Fs(v)
Fw(v)

. ||

Lemma C5: Let (αw, αs) be a solution of (C3-C5) in D defined over

(b0, η]. Then, d
db
αw (b) ,

d
db
αs (b) > 0, d

db
Fs(αs(b))
Fw(αw(b))

≥ 0 and Fs (αs (b)) ≤
Fw (αw (b)), for all b in (b0, η].

Proof: From Lemma C2, d
db
αw (b) > 0, for all b in (b0, η]. From Lemma

C4, αw (b) ≤ αs (b). Consequently, the sum of (αw (b)− b) Fs(π(αw(b),αs(b)))
Fs(αs(b))

and (π (αw (b) , αs (b))− b)
h
1− Fs(π(αw(b),αs(b)))

Fs(αs(b))

i
is not smaller than π (αw (b) , αs (b))

−b, and the factor between braces in the RHS of (C3) is not smaller than
1− n−2

n−1 >
1

n−1 > 0. We then also have
d
db
αs (b) > 0, for all b in (b0, η]. More-

over, from (C3) and (C4), we find d
db
lnFs (αs (b)) ≥ 1

π(αw(b),αs(b))−b
1

n−1 =
d
db
lnFw (αw (b)), for all b in (b0, η], and consequently

Fs(αs(b))
Fw(αw(b))

is nondecreas-

ing over this interval. Since, from (C5), Fs(αs(η))
Fw(αw(η))

= 1, we obtain Fs (αs (b)) ≤
Fw (αw (b)), for all b in (b0, η]. ||

Lemma C6 (Monotonicity of the solution of (C3-C5) with respect to η):
Let (αw, αs) and (eαw, eαs) be the solutions of (C3, C4) in D and the initial

condition (C5) for η and eη, respectively, with eη < η. Assume further that

(αw, αs) and (eαw, eαs) are defined over (b,eη], where b ≥ c. Then, we have:

eαw (b) > αw (b)eαs (b) > αs (b) ,

for all b in (b,eη].
Proof: There exists no b in (max (c, b) ,eη] such that eαw (b) = αw (b)

and eαw (b) = αw (b). Otherwise, (αw, γ) and (eαw, eγ) could be extended over
the unions of their definition domains and would coincide over this union.
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However, this is impossible since, from (C5) and Lemma C2 :

eαw (eη) = d > αw (eη) .
Let b0 be defined as follows:

b0 = inf {b ∈ [b,eη] |eαw (b
00) > αw (b

00) , eαs (b
00) > αs (b

00) , for all b00 in (b,eη]} .
From our assumptions and by continuity, there exists ε > 0 such that

[eη − ε,eη] is included in the set in the definition above of b0. We want to

prove that b0 = b. Suppose b0 > b. Then, by continuity and from the

observation above only the two cases below are possible:

Case 1: eαw (b
0) = αw (b

0) and eαs (b
0) > αs (b

0).

Case 2: eαw (b
0) > αw (b

0) and eαs (b
0) = αs (b

0).

We investigate each case in turn.

Case 1. From (C4) and because π is strictly increasing, we have:

d

db
lnFw (αw (b

0))

=
1

(n− 1) (π (αw (b0) , αs (b0))− b0)

>
1

(n− 1) (π (eαw (b0) , eαs (b0))− b0)

=
d

db
lnFw (eαw (b

0)) .

Then, since eαw (b
0) = αw (b

0) and d
db
eαw (b

0) < d
db
αw (b

0), we would haveeαw (b) < αw (b), for some b to the right of b’, which would contradict the

definition of b0.
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Case 2. (C3) can be rewritten as follows:

d

db
lnFs (γ (b))

=
1

(n− 1) (π (αw (b) , αs (b))− b)

+
n− 2
n− 1

π (αw (b) , αs (b))− αw (b)

(π (αw (b) , αs (b))− b)2
Fs (π (αw (b) , αs (b)))

Fs (αs (b))
. (C8)

FromLemmaC4, αw (b) ≤ αs (b). From the definition (3) of π, π (αw (b) , αs (b))−
αw (b) is equal to

Fs(αs(b))−Fs(π(αw(b),αs(b)))
fs(ρ(αw(b),αs(b)))

and the second term in the RHS of

(C8) is equal to:

n− 2
n− 1

Fs (αs (b))− Fs (π (αw (b) , αs (b)))

Fs (αs (b))

Fs (π (αw (b) , αs (b)))

fs (π (αw (b) , αs (b))) (π (αw (b) , αs (b))− c)2

µ
1 +

b− c

π (αw (b) , αs (b))− b

¶2
,

which, from our assumption (a) (and b > c), is nonincreasing with respect

αw (b). Because the first term is strictly decreasing in αw (b), we find, un-

der the assumptions of Case 2: d
db
lnFs (eαs (b

0)) < d
db
lnFs (αs (b

0)), which,

together with eαs (b
0) = αs (b

0), contradicts the definition of b0. ||

Lemma C7: Let b (η) be the lower-extremity of the maximal defin-

ition interval of the solution (αw, γ) in D of the system (C3, C4) with

initial condition (C5) for the value η of the parameter. Then, b (η) is

strictly increasing when strictly above c. Furthermore, if b (η) > c, then

αw (b (η)) , αs (b (η)) > c and π (αw (b (η)) , αs (b (η))) = b (η).

Proof: Let η be such that η < d and b (η) > c. From the de-

finition of D and Lemma C5, we have αw (b (η)) = c, αs (b (η)) = c, or

π (αw (b (η)) , αs (b (η))) = b (η), where αw (b (η)) , αs (b (η)) are the values

of the continuous extensions of the solution (αw, αs) to the system (C3, C4)

with initial condition (C5) with the value η of the parameter. From Lem-
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mas C4 and C5, αw (b (η)) = c if and only if αs (b (η)) = c, in which case

π (αw (b (η)) , αs (b (η))) = c < b (η), contrary to the definition of D. Conse-

quently, we have

αw (b (η)) , αs (b (η)) > c (C9)

π (αw (b (η)) , αs (b (η))) = b (η) .

Let eη be such that η < eη < d. Let (eαw, eαs) be the solution of the (C3-C5)

for the values eη of the parameter in the initial condition (C5). The inequality
b (eη) < b (η) is impossible. In fact, from Lemma C6, we have:

αs (b) > eαs (b) , (C10)

αw (b) > eαw (b) , (C11)

for all b in (max (b (eη) , b (η)) , η). Suppose b (eη) < b (η). By making b in these

inequalities tend towards b (η), we would obtain eγ (b (η)) ≤ αs (b (η)) andeαw (b (η)) ≤ αw (b (η)) and, consequently, b (η) = π (αw (b (η)) , αs (b (η))) ≥
π (αw (b (eη)) , αs (b (eη))) = b (eη), a contradiction.
We have proved b (η) ≤ b (eη). We now prove b (η) < b (eη) by showing

that the equality b (η) = b (eη) is impossible. Suppose b (η) = b (eη). We then
have, from the definition of D and from (C10) and (C11):

eαs (b (η)) ≤ αs (b (η))eαw (b (η)) ≤ αw (b (η))

π (eαw (b (η)) , eαs (b (η))) = π (αw (b (η)) , αs (b (η))) = b (η) .

Since π is strictly increasing, we find:

eαs (b (η)) = αs (b (η))eαw (b (η)) = αw (b (η)) . (C12)
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From (C4) and (C10, C11), we have:

d

db
lnFw (αw (b))

=
1

(n− 1) (π (αw (b) , αs (b))− b)

<
1

(n− 1) (π (eαw (b) , eαs (b))− b)

=
d

db
lnFw (eαw (b)) ,

for all b in (b (η) , η], and, consequently, Fw(αw(b))
Fw(eαw(b)) is strictly decreasing over

this interval.

From (C9) and (C12), we have Fw(αw(b(η)))
Fw(eαw(b(η))) = 1. Thus, αw (b) < eαw (b),

for all b in (b (η) , η], which contradicts Lemma C6. ||

In what follows, b (η) is as defined in Lemma C7. The sub-lemma below

is helpful in the proof of Lemma C8.

Sub-lemma C1: For all v in (αw (b) , d], with ϕ = αsβw and b ≥ b (η):

(π (v, ϕ (v))− βw (v))Fw (v)
n−1 − (π (αw (b) , αs (b))− b)Fw (αw (b))

n−1

=

Z v

αw(b)

Fw (v)
n−1 d

dv
π (v, ϕ (v)) ; (C13)

βw (v)Fw (v)
n − bFw (αw (b))

n

=

Z v

αw(b)

π (v, ϕ (v))
d

dv
Fw (v)

n . (C14)

Proof: From (C4), we have:

(π (v, ϕ (v))− βw (v))
d

dv
Fw (v)

n−1 = Fw (v)
n−1 d

dv
βw (v) ,
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and hence:

d

dv

©
(π (v, ϕ (v))− βw (v))Fw (v)

n−1ª = Fw (v)
n−1 d

dv
π (v, ϕ (v)) ,

for all v in (αw (b) , d], with ϕ = αsβw and b ≥ b (η). Integrating this

equation from αw (b) to v in (αw (b) , d], we find:

(π (v, ϕ (v))− βw (v))Fw (v)
n−1 − (π (αw (b) , αs (b))− b)Fw (αw (b))

n−1

=

Z v

αw(b)

Fw (v)
n−1 d

dv
π (v, ϕ (v)) .

(C13) then follows. Integrating (C13) by parts, we find (C14). ||

Lemma C8:
(i) For all η ≤ c, we have b (η) ≤ c;

(ii) For all η in
³
d− R d

c
Fs (w)

n−1 dw, d
´
, we have b (η) > c.

Proof: (i) If η ≤ c, then, since (η, d, d) belongs D, Lemma C5 im-

plies that there exists a strictly increasing solution of (C3-C5) that can be

continued strictly to the left of η. Consequently, b (η) < c and (i) is proved.

(ii) Let η be in the open interval
³
d− R d

c
Fs (w)

n−1 dw, d
´
. We show

that b (η) > c. Suppose that b (η) ≤ c, instead. From (C14) in Sub-lemma

C1 with v = d and b = c and Lemma C5, which implies ϕ = αsβw ≤ F−1s Fw,
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we have:

η

≤
Z d

αw(b)

π (v, ϕ (v))
d

dv
Fw (v)

n−1

≤
Z d

αw(b)

F−1s Fw (v)
d

dv
Fw (v)

n−1

≤
Z d

c

F−1s Fw (v)
d

dv
Fw (v)

n−1

= d−
Z d

c

Fs (w)
n−1 dw,

and η ≤ d− R d
c
Fs (w)

n−1 dw, which contradicts our initial assumption. ||

Let η∗ be defined as follows:

η∗ = inf {η < d|b (η) ≥ c} .

From Lemma C8 (ii), the set in the definition of η∗ is not empty and:

c ≤ η∗ ≤ d−
Z d

c

Fs (w)
n−1 dw. (C15)

Lemma C9: Let (αw (b; η) , αs (b; η)) be the solution of (C3-C5) in the

domain D. Suppose b (η∗) > c. Then, b (η) < c, for all η < η∗, and :

lim
η→<η∗

π (αw (b; η) , αs (b; η))

= lim
η→<η∗

αw (b; η)

= lim
η→<η∗

αs (b; η)

= b (η∗) ,

for all b ∈ (c, b (η∗)).
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Proof: For all η ≤ η∗, we have (c, b (η∗)) is included the (interior) of the

definition domain of the solution (αw, αs) of (C3-C5) and

αw (b) ≤ π (αw (b) , αs (b))

≤ π (αw (b (η
∗)) , αs (b (η

∗)))

≤ π (α∗w (b (η
∗)) , α∗s (b (η

∗)))

= b (η∗) , (C16)

for all b in this interval, where the first inequality follows from Lemma C4,

the second from Lemma C5, the third from Lemma C6, and the the equality

from Lemma C7.

Let b be in (c, b (η∗)). Suppose limη→<η∗ αw (b) does not exist or is differ-

ent from b (η∗). Then, there exists v0 < b (η∗) and a sequence (ηk)k≥1 such

that

lim
k→+∞

ηk = η∗

αw (b; ηk) < v0

ηk < η∗,

for all k ≥ 1.
Let ε be a strictly positive number. Let (αw, αs) be a solution defined

over (b, η] of (C3-C5). Then, (βw, ϕ) is the solution, defined over (αw (b) , d],

of the system below:

d

dv
ϕ (v) =

fw (v)

Fw (v)

Fs (ϕ (v))

fs (ϕ (v))⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n− 1−

(n− 2)

⎛⎜⎜⎜⎜⎜⎝
(v − βw (v))Fs (π (v, ϕ (v)))+

(π (v, ϕ (v))− βw (v))

(Fs (ϕ (v))− Fs (ρ (v, ϕ (v))))

⎞⎟⎟⎟⎟⎟⎠
(π(v,ϕ(v))−βw(v))Fs(ϕ(v))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(C17)
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d

dv
βw (v) = (n− 1)

fw (v)

Fw (v)
(π (v, ϕ (v))− βw (v)) . (C18)

Through the change of variables (p, χ, ζ) = (Fw (v) , FsϕF
−1
w , βwF

−1
w ), the

system above is equivalent to the system below:

d

dp
χ (p) =

χ (p)

p⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n− 1− (n− 2)⎡⎢⎢⎢⎢⎢⎣
(F−1w (p)− ζ (p))Fs (π (F

−1
w (p) , χ (p)))+

(π (F−1w (p) , χ (p))− ζ (p))

(χ (p)− Fs (π (F
−1
w (p) , χ (p))))

⎤⎥⎥⎥⎥⎥⎦
(π(F−1w (p),χ(p))−ζ(p))χ(p)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(C19)

d

dp
ζ (p) =

n− 1
p

¡
π
¡
F−1w (p) , χ (p)

¢− ζ (p)
¢
, (C20)

and (FsϕF
−1
w , βwF

−1
w ) is a solution over (Fw (αw (b)) , 1] to this system and

the initial condition below:

χ (1) = 1, ζ (1) = η.

For the sake of convenience, denote (α∗w, α
∗
s) the solution to (C3-C5) for

η∗. Let w be strictly larger than α∗w (b (η
∗)) such that:

|π (w,ϕ∗ (w))− β∗w (w)| < ε

(such a w exists since, from Lemma C7, π (α∗w (b (η
∗)) , ϕ∗ (α∗w (b (η

∗)))) =

β∗w (α
∗
w (b (η

∗)))). From the continuity of the solution to the system with

initial condition above and the continuity of F−1s and π, for all ε0 > 0, there

exists δ > 0, such that ζ and χ is defined at Fw (w), and thus βw and
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ϕ = F−1s χFw are defined at w, and such that:

|ζ (Fw (w))− ζ∗ (Fw (w))|
= |βw (w)− β∗w (w)|
< ε,

|π (w,ϕ (w))− π (w,ϕ∗ (w))|
=

¯̄
π
¡
w,F−1s χFw (w)

¢− π
¡
w,F−1s χ∗Fw (w)

¢¯̄
< ε,

for all η such that η∗ − δ < η < η∗ (proceeding in this way, through the

system (C19, C20) avoids making Lipschitz conditions on f).

From (C13) in Sub-lemma C1 with b = b, we find:Z w

αw(b;ηk)

Fw (v)
n d

dv
π (v, ϕ (v))

≤ π (w,ϕ (w))− βw (w)

≤ 3ε,

for all k ≥ 1 such that η∗ − δ < ηk.

From αw (b; ηk) < v0 < α∗w (b (η
∗)) < w, we then find:Z α∗w(b(η∗))

v0
Fw (v)

n d

dv
π (v, ϕ (v)) ≤ 3ε,

and, from Lemma C1 and the inequality d
dv
π (v, ϕ (v)) ≥ ∂

∂v
π (v, ϕ (v)), we

then obtain:

(α∗w (b (η
∗))− v0)L ≤ 3ε,

where L is a strictly positive lower bound of ∂
∂v
π (v, w) over [v0, d]2. This

inequality must hold for all ε > 0, which is clearly impossible since the LHS
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is a strictly positive constant. We have proved

lim
η→<η∗

αw (b; η) = b (η∗) ,

for all b in (c, b (η∗)). From the inequalities (C16), we then find limη→<η∗

π (αw (b; η) , αs (b; η)) = b (η∗) and, consequently (because π is continuous

and strictly increasing), limη→<η∗ αs (b; η) = b (η∗). ||

Lemma C10:
b (η∗) = c

and the solution of (C3-C5) for the value η∗ of the parameter satisfies the

boundary conditions βw (c) = βs (c) = c, βw (d) = βs (d).

Proof: Suppose that, as in Lemma C9, b (η∗) > c. For η ≤ η∗, consider

the function below:

ln (b (η∗)− b) + n lnFw (αw (b; η)) , (C21)

which is defined for b in (c, b (η∗)) ⊆ (b (η) , b (η∗)). Let b0 be in this interval
(c, b (η∗)). Let ε be a (small) strictly positive number. Since, from Lemma

C9, we have limη→<η∗ π (αw (b; η) , αs (b; η)) = limη→<η∗ αw (b; η) = b (η∗), for

all b in (c, b (η∗)), there exists δ > 0 such that

|Fw (αw (b (η
∗)− ε; η))− Fw (b (η

∗))| < ε,

π (αw (b
0; η) , αs (b

0; η)) > b (η∗)− ε/2, (C22)

for all η such that η∗ − δ < η < η∗.

From (C4), the derivative, with respect to b, −1
b(η∗)−b +n d

db
lnFw (αw (b; η))

of the function (C21) is equal to:

−1
b (η∗)− b

+
1

π (αw (b; η) , αs (b; η))− b
,
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and consequently, we have:

ln (b (η∗)− b0) + n lnFw (α (b
0; η))

≤ ln ε+ n ln {Fw (b (η
∗)) + ε}

−
Z b(η∗)−ε

b0

µ
1

π (αw (b; η) , αs (b; η))− b
− 1

b (η∗)− b

¶
db, (C23)

for all η such that η∗ − δ < η < η∗.

Since b (η∗)−b ≥ ε and, from (C22), π (αw (b; η) , αs (b; η))−b ≥ π (αw (b
0; η) , αs (b

0; η))−
(b (η∗)− ε) ≥ ε/2 over the integration interval in (C23), we have the following

bound over this interval:¯̄̄̄
1

π (αw (b; η) , αs (b; η))− b
− 1

b (η∗)− b

¯̄̄̄
≤ 2

ε
+
1

ε
.

We may thus apply Lebesgue convergence theorem, for example, and we find

limη→<η∗
R b(η∗)−ε
b0

³
1

π(αw(b;η),αs(b;η))−b − 1
b(η∗)−b

´
db = 0 and, consequently,:

ln (b (η∗)− b0) + n lnFw (b (η
∗))

= lim
η→<η∗

{ln (b (η∗)− b0) + n lnFw (αw (b
0; η))}

≤ ln ε+ n ln {Fw (b (η
∗)) + ε} .

Since this inequality holds for all ε > 0, we obtain ln (b (η∗)− b0)+n lnFw (b (η
∗)) =

−∞ or, equivalently, (b (η∗)− b0)Fw (b (η
∗)) = 0, which is impossible, since

b (η∗) > 0 and b0 < b (η∗). We have proved that b (η∗) > c is impossible, that

is, we have proved the equality b (η∗) = c. ||

Lemma C11: There cannot exist two different values of the parameter
η such that the corresponding solutions to (C3-C5) are defined over (c, η] and

such that αw (c) = αs (c) = c.

Proof: Suppose there exists two such values η0 and eη, with η0 < eη < d.

Let α0w, α
0
s and eαw, eαs the corresponding solutions to (C3-C5). Then, β

0
w =
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α0−1w , ϕ0 = β0sα
0
w, and eβw = eα−1w , eϕ = eβseαw are solutions to (C17, C18) with

initial condition ϕ (d) = d, βw (d) = η.

From (C17), we have d
d lnFw

ϕ0 (d) = d
d lnFw

eϕ (d) = 1
fs(d)

. Moreover, from

(C17, C18) and the differentiability of π (v, ϕ (v)) and π (v, eϕ (v)); d
d lnFw

ϕ0,
d

d lnFw
eϕ, d

d lnFw
βw,

d
d lnFw

eβw are differentiable and, by differentiating (C17), we
find:

d

dv

µ
d

dnFw
ϕ0 (v)

¶
v=d

− d

dv

µ
d

d lnFw
eϕ (v)¶

v=d

=
1− d

dv
π (v, eϕ (v))v=d
d− eη − 1−

d
dv
π (v, ϕ0 (v))v=d
d− η0

=

µ
1− 1 + (fw (d) /fs (d))

2

¶µ
1

d− eη − 1

d− η0

¶
> 0,

since, from assumption (c), fw(d)
fs(d)

< 1. Consequently, there exists ε > 0, such

that ϕ0 (v) > eϕ (v) and, from the initial condition βw (d) = η, β0w (v) < eβw (v),
for all v in (d− ε, d).

Let v be defined as follows:

v = inf
n
v ∈ [c, d] |ϕ0 (w) > eϕ (w) and β0w (w) < eβw (w) , for all w in (v, d)o .

From the previous paragraph, v ≤ d − ε. Suppose v > c. Since ϕ0,β0w
and eϕ, eβw are distinct solutions of the same differential system, the equal-
ities ϕ0 (v) = eϕ (v) and β0w (v) = eβw (v) cannot both hold. Assume first

ϕ0 (v) > eϕ (v) and β0w (v) = eβw (v). From (C18), d
dv
βw (v) >

d
dv
eβw (v), which

is impossible since β0w (w) < eβw (w) holds true over (v, d). Assume next

ϕ0 (v) = eϕ (v) and β0w (v) < eβw (v). The factor between braces in (C17) can
be rewritten as:

n− 1− (n− 2)
∙
1− π (v, ϕ (v))− v

π (v, ϕ (v))− βw (v)

Fs (π (v, ϕ (v)))

Fs (ϕ (v))

¸
,
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and hence is increasing in βw (v). Consequently, d
dv
ϕ0 (v) < d

dv
eϕ (v), which

is impossible since ϕ0 (w) > eϕ (w) holds true over (v, d).
We have proved v = c, which implies ϕ0 (w) > eϕ (w), for all w in (c, d).

From (C14) in Sublemma C1, we then have:

β0w (d)

=

Z d

c

π (v, ϕ0 (v))
d

dv
Fw (v)

n

>

Z d

c

π (v, eϕ (v)) d

dv
Fw (v)

n

= eβw (d)
and β0w (d) > eβw (d). However, this is impossible since, from the initial

condition at d, β0w (d) = η0 < eη = eβw (d). ||

III. Proof of the Proposition
(i) follows from Lemmas C10 and C11 and (ii) from Lemma C5.
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