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Abstract
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if and only if the value complementary distribution function is not −(k+1)-
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1. Introduction

The seminal work on sequential auctions of identical items by Milgrom

and Weber (2000),1 henceforth referred to as MW, predicts nondecreasing

prices along the symmetric equilibrium of their symmetric model with inter-

dependent values, affiliated signals, risk neutrality, and single-unit demands.

With private and independent values, or IPV, the expected price in MW’s

equilibrium stays constant as the price becomes a martingale2. By augment-
1While published in 2000, this work has circulated since 1982. See also Weber (1983)

and Mezzetti, Pekeč, and Testlin (2008).
2The realized price goes up and down. Price decreases may be more probable than

price increases, as in the sequential second-price auction with two units and three bidders
when the value density decreases. Indeed, in this case, the median of the second-auction
price conditional on the first-auction price is smaller than its expectation, hence than the
first-auction price.
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ing MW’s IPV model in a variety of ways, theorists have provided possi-

ble explanations for the many documented instances of changing and even

declining prices. What explanation is the most plausible depends on the

particular auctions under consideration. Decreasing price expectations al-

ready appear in MW’s discussion of risk aversion. Later contributions have

allowed, for example: other utility functions; entry costs; exogenously or en-

dogenously uncertain supply; multi-unit demands with decreasing marginal

values, complementarities, options to buy more than one unit at the current

price, budget constraints, or complete information; different items being auc-

tioned with various assumptions on when bidders learn their values; costs of

waiting; bidding agents, or nonstrategic bidders. Deltas and Kosmopolou

(2004) and Trifunovíc (2014) survey many of these contributions.

More recently, Ghosh and Liu (2021) have found decreasing prices in the

sequential first-price auction with ambiguity-averse bidders.3 Rosato (2023)

has shown that the random price process is a supermartingale if bidders’

preferences display expectations-based loss aversion of the Koszegi and Rabin

(2006, 2007, 2009)’s type.

Surprisingly, the vast theoretical literature that followed MW has yet to

answer the fundamental question of whether MW’s original IPV model pos-

sesses asymmetric equilibria where the expected price decreases. As I show

in this paper, the answer for the sequential second-price auction, or SSPA, is

a qualified yes. In fact, such equilibria do exist for any number k of units and

all larger numbers of bidders, but only when the value complementary distri-

bution function is not −(k + 1)-concave everywhere. To obtain this result, I
first prove through marginal revenue analysis that a declining expected price

can only occur for such value distributions and for some inefficient equilibria.

For these distributions, I then construct sequentially rational equilibria with

the required properties.

3Gosh and Liu (2021) deal with the time inconsistency that may arise in the bidders’
strategies through an equilibrium requirement similar to Strotz (1955)’s “consistent plan-
ning.”
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Decreasing prices in asymmetric equilibria also occur in Katzman (1999)

and Lorenzon (2023). Both consider IPV models of the two-unit SSPA with

two bidders, each with two-unit demand. Katzman (1999) finds that the

expected price decreases along an asymmetric equilibrium if the bidders are

sufficiently heterogeneous ex ante. Although Lorenzon (2023) assumes ex-

ante homogeneous bidders, he obtains a price supermartingale at equilibrium

when one of the two bidders learns his value only after winning the first

auction. While I too construct asymmetric equilibria, I stay within MW’s

IPV model, where the bidders are ex-ante homogeneous, learn their own

values before the SSPA starts, and have single-unit demands.

In Section 2, I explain the reasons behind the results, using the two-unit

three-bidder case as an example. In Section 3, I provide preliminaries of the

formal analysis, along with various definitions and reminders. I devote Sec-

tion 4 to marginal revenue analysis and Sections 5 and 6 to the construction

of equilibria. I obtain the main result in Section 7, and conclude in Section

8.

2. First observations on price changes and inefficiency

The results will follow from a link between the equilibrium allocation

and the changes in the expected price. Here, I illustrate this link in the

simple case of two units and three bidders whose values are independently

and identically distributed over [0, 1]. In any efficient equilibrium of the

SSPA, the two bidders with the highest values receive the two units, and

the price at the second auction, where bidders bid their values, is the lowest

value, as in MW’s equilibrium. From the multi-unit extension of the revenue-

equivalence theorem, the sum of the expected prices at both auctions is the

same as in MW’s equilibrium. The expected price at the first auction must

then also be the same.

In the equilibrium in Figure 1 below, a bidder waits until the second auc-

tion to submit a serious bid. The two other bidders follow a common bidding
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function at the first auction. Although asymmetric, this equilibrium is effi-

cient; therefore, the expected price does not change from the first auction to

the second. I explain in Appendix A why the bidding functions in Figure 1

form an equilibrium.

Figure 1: First-auction bidding functions in an efficient asymmetric

equilibrium. E (v ∧V) is the expectation of the minimum of v and a

random variable V with the same probability distribution as the bidders’

values.

Figure 2: An inefficient equilibrium. β[2,3]MW is MW’s equilibrium bidding

function.

The equilibrium in Figure 2 is inefficient. By bidding more aggressively

than bidders 2 and 3 over [0, η] at the first auction, bidder 1 can win a unit
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despite having the lowest value. In such equilibria, whose existence I prove

in Appendix A, the expected prices at the two auctions may differ.

Inefficiency increases the second-auction price above the lowest value.

If there was an equilibrium with decreasing price expectations, the total

revenues would then exceed the revenues from efficient equilibria. Per the

revenue-equivalence theorem, a winning bidder’s contribution to the expected

revenues is the marginal revenue MR(v) of the value complementary distri-

bution function, which is interpreted as a demand function, at this bidder’s

value v, which is interpreted as a price. Therefore, no decreasing-price equi-

librium exists if the marginal revenue increases with the value, as the efficient

equilibria maximize revenues in this case.

For some value distributions, the marginal revenue decreases quickly

enough that the increase in total revenues due to some inefficient equilib-

rium can exceed twice that of the second-auction price. When this happens,

the expected-price sequence decreases. For example, in Figure 2, bidder 1

wins the first auction although his value v1 is the lowest, bidder 3 with value

v3 wins the second auction, and the price at the second auction is bidder 2’s

value v2. Under efficiency, bidder 2 would have won a unit, as his value is

the second highest, and the price at the second auction would have been v1.

Thus, the expected price decreases in this equilibrium if MR (v1)−MR (v2)

is larger than 2 (v2 − v1) for any such combination of values. That is, if

2v +MR (v) decreases over the interval [0, η]. As I show in the next sec-

tion, this is the case when the value complementary cumulative distribution

function is “convex enough” or, more precisely, strictly −3-convex over this
interval.

Later in Sections 5 and 6, I describe another type of inefficient equilibria,

where the inefficiency also comes from a bidder following a higher bidding

function, but only for values that can be confined to any given subinterval of

[0, 1]—in particular to an interval where 2v+MR (v) would decrease. Conse-

quently, for any value distribution where 2v+MR (v) decreases somewhere,
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an equilibrium of this type will exist where the expected price decreases.

3. Definitions and preliminary results

In this section, I define the model, the equilibrium concept, and some

notations. I also obtain preliminary results.

A number k > 1 of identical units is put up for sale at an SSPA with n > k

potential bidders, whose values are private and independently distributed

over [0, 1] according to the same continuous cumulative distribution function

F that is C2 over (0, 1] and has a strictly positive derivative F 0 = f over (0, 1).

The choice of the value interval [0, 1] is made only for notational convenience,

and all results apply to any bounded interval. By labelling the bidders from

1 to n, their set becomes N = {1, 2, ..., n}.
Participation in any auction is voluntary, and who participates is public

information before bidding takes place. Only bidders who participated and

lost all previous auctions may participate in a given auction. The reserve

price is always zero, and fair lotteries break ties. After each auction, the

auctioneer announces only the winning bid.

Thus, if bidder i wins the sth auction or does not take part in it, he be-

comes ineligible to participate in future auctions. Before bidding at the tth

auction, a participating bidder i has observed the history
³
vi,
³
P(s), b(s)i , b

(s)
w

´
s<t

,P(t)
´
,

where vi is his value; P(s), b(s)i , b
(s)
w are the set of participants, his own bid,

and the winning bid at the past sth auction; and P(t) is the set of participants
at the current auction.

Only the winner of an auction earns a payoff: the difference between his

value and the auction price. Additionally, the bidders are risk neutral. I

denote the sequential auction so defined as SSPA(k,n). In some lemmas,

I will have to allow the values to be distributed differently. I will clearly

indicate when this is the case.

A bidder i’s strategy τ i in SSPA(k,n) recommends permissible partici-

pation and bidding decisions, conditional on every possible history he has
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observed.4 An undominated strategy prescribes participation when eligible

and, with at least one other bidder participating, a bid never exceeding the

value at any auction, equal to the value at the last auction, and equal to 0

at any previous auction with no more participating bidders than units.5

An equilibrium σ of SSPA(k,n) must specify a profile (τ 1, ..., τn) of un-

dominated strategies that are sequentially rational, that is, such that they

recommend optimal responses from any bidder to the other bidders’ strate-

gies, given his beliefs about their values and past bids. In addition to consis-

tency between beliefs and strategies, I require that no bidder participating

in an auction be believed to have previously deviated, as any undominated

strategy defined above is compatible with the bidder having lost all prior

auctions. A bidder’s beliefs about other participants to an auction are then

uniquely determined by the history he has observed and the strategies. Be-

liefs about nonparticipants are irrelevant, as those are ineligible to take part

in any future auction. The profile of strategies will therefore suffice to define

any equilibrium. Finally, by dominance of truth-bidding, no attention needs

to be paid to the beliefs at the last auction.

An equilibrium is said to have its inefficiency confined to some interval

if conditional upon allocating the units inefficiently the values of the ineffi-

cient winners and losers almost surely belong to this interval. An inefficient

equilibrium allocates units inefficiently with strictly positive probability.

Thanks to the supermodularity I state in Lemma 1 below, verifying first-

order optimality conditions or ruling out profitable local deviations suffices to

check the global optimality of first-auction nondecreasing bidding functions.

From (ii), supermodularity will also occur in the “continuation” sequential

auctions, starting after one or more units have already been sold.

4The probability distributions over the possible decisions must depend on the observed
histories in a Borel measurable way.

5This definition encompasses all strategies that are not dominated, with the exception
of those that do not recommend participation at value 0.
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Lemma 1:6

(i) Given strategies the other bidders are expected to follow, a bid-
der’s total expected payoff in SSPA(k,n) is supermodular in his value and

first-auction bid if he behaves optimally after losing the first auction.

(ii) (i) holds true even if the bidders’ values are not distributed iden-
tically.

Proof: See Appendix B.

F is the value complementary cumulative function, or ccdf, 1−F . Through-
out the paper, bold Latin letters refer to random variables. Thus, Vi is

bidder i’s value viewed as a random variable, and vi its realization. V is a

generic value, distributed according to F , independently of all other random

variables. In addition to the standard order statistics, I also rely on order

statistics of values when one of them may be distributed differently. See the

notations below.

Order statistics
(i) V(l,m) is the lth order statistic of m values iid7 according to F .

(ii) eV(l,m) is the lth order statistic of m values independently distrib-

uted: m−1 according to F ; and one, I denote eV, according to some, possibly
different, probability distribution. I will still use the notationV(l0,m−1) for the

order statistics of the m−1 iid values, and will indicate the distribution of eV
as a subscript to the expectation sign. For example, EeV∼G

³eV(5,8)|V(1,7) = v
´

means the expectation of the fifth order statistic of a complete set of eight

values conditional on v’s being the maximum of the seven iid values, and G’s

being the distribution of the value eV.
Given a strategy profile, Pt is the price at the tth auction when bidders fol-

low their strategies. A decreasing expected-price sequence is a nonincreasing

6The assumption below of optimal responses after the first auction implies their exis-
tence for all values in the distributions’ supports.

7Standard notation for “independently and identically distributed.”
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sequence EP1 ≥ ... ≥ EPk such that EP1 > EPk.

I denote τMW MW’s equilibrium strategy. At any auction where l >

1 units remain and m > l bidders participate, this undominated strategy

recommends the bidding function β
[l,m]
MW such that, for all v in [0, 1]:

β
[l,m]
MW (v) = E

¡
V(l,m−1)|V(1,m−1) = v

¢
.

For l ≥ 1, the ccdf of V(l,l) is F
l
. The marginal-revenue function8 of this

ccdf is MR(l) below:

MR(l) (v) = v − F (v)

lf (v)
,

with v in (0, 1). As in Caplin and Nalebuff (1991), a strictly positive func-

tion g is (strictly) ρ-concave if ρgρ is (strictly) concave when ρ 6= 0 and

(strictly) log-concave when ρ = 0. The definitions of ρ-convexity and strict

ρ-convexity are similar. ρ-concavity implies strict σ-concavity, for all σ < ρ,

and ρ-convexity implies strict ζ-convexity, for all ζ > ρ. A simple calculation

and results from McAfee and McMillan (1987) and Ewerhart (2013) imply

the technical lemma below, where d ln f

d lnF
measures the convexity of the inverse

of F as the coefficient of relative risk aversion measures the concavity of a von

Neumann-Morgenstern utility function of wealth in standard microeconomic

theory.

Lemma 2: For all l, l0 ≥ 1, v in (0, 1), and open subinterval I of (0, 1):
(i) MR(l) (v) = (1− l0/l) v + (l0/l)MR(l0) (v)

(ii) The following three statements are equivalent: MR(l) is nonde-

creasing over I; F is −l-concave over I; supw∈I
d ln f

d lnF
(w) ≤ l + 1.

(iii) If d ln f

d lnF
(v) > l+1, there exists an open subinterval I 0 containing

v where F is strictly −l-convex and MR(l) decreases strictly.

Throughout the paper, ∨ and ∧ are the maximum and minimum opera-

8Or “virtual-value” function. See Myerson (1981, 1984), Bulow and Roberts (1989),
and Bulow and Klemperer (1996).
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tions.

4. Marginal revenue analysis

Lemma 3 below follows from the identity
k−1P
t=1

E (Pt) − (k − 1)EPk =

E

µ
kP
t=1

Pt

¶
− kEPk; the revenue-equivalence theorem; the observation that,

under efficiency, the price at the last auction is the k+1th highest value; and

Lemma 2. INEF (σ) in the lemma is the event under which the equilibrium

σ allocates the units inefficiently.

Lemma 3: For 2 ≤ k < n, let σ be an equilibrium of SSPA(k,n) with

inefficiency confined to an interval I. Conditional on INEF (σ), let L1 ≤ k

be such that V
(L1,n)

is the highest value among the inefficient losers.’ Then:

(k + 1)E
³
MR(k+1)

¡
V(k+1,n)

¢−MR(k+1)

³
V

(L1,n)

´
|INEF (σ)

´
Pr (INEF (σ))

=
k−1X
t=1

E (Pt)− (k − 1)EPk, if k = n− 1;

≤
k−1X
t=1

E (Pt)− (k − 1)EPk, if F is − 1-convex over I.

Proof: See Appendix B.

From the equality in the lemma above when k = n−1 and from Lemma 2,
strict − (k + 1)-convexity in some interval is necessary for the last expected
price to be below average, and, hence, also for the expected price sequence

to be decreasing. Lemma 4 follows.

Lemma 4: If an equilibrium of the SSPA(k,k + 1) exists where EPk <µ
k−1P
t=1

E (Pt)

¶
/ (k − 1), then F is not − (k + 1)-concave everywhere.

From the inequality in Lemma 3 when k ≤ n − 1 and from Lemma 2,

strict − (k + 1)-convexity of F over an interval that contains the inefficiency
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of an inefficient equilibrium suffices to obtain a last expected price below

average.9

Example: k = 2.

With k = 2, the RHS’s of the equality and inequality in Lemma 3 reduce

to EP1 − EP2. The equality is the link I alluded to in Section 2 between

equilibrium allocation and the expected difference between the auction prices

when there are n = 3 bidders. In this case, L1 = 2.

For any number n ≥ 3 of bidders, Lemma 3 implies a decreasing expected-
price sequence if the equilibrium allocation is inefficient with strictly positive

probability and only for values in an interval where F is strictly −3-convex.
From Lemma 2 in the previous section and the similarity between d ln f

d lnF
and

the coefficient of relative risk aversion, it is simple to find distributions for

which F is strictly −3-convex throughout an interval of probability close to
1. For example, for any distribution F (v) =

¡
1− v1/(1−c)

¢
/
¡
1− v1/(1−c)

¢
,

with c > 4, F is strictly −3-convex over an interval [1, d (v)] whose probabil-
ity tends towards 1 as the upper extremity v of the support [1, v] becomes

larger10. Thus, the expected price decreases from the first auction to the

second along any equilibrium that is inefficient, but only within the interval

[1, d (v)].

5. Construction of equilibria: the strategies at the first auction

Inefficiency in the equilibria I now construct occurs when bidder 1 with

a lower value outbids all k highest-value bidders at the first auction. The

inefficiency is localized to a value interval where bidder 1 follows a bidding

function higher than the other bidders.’ The strategies at the subsequent

9Under inefficiency, V(k+1,n) also belongs to this interval.
10d (v) = (1− (4/c))c−1 v and F (d (v)) =

1− c
c−4v

1/(1−c)

1−v1/(1−c) , for v > (1− (4/c))1−c. To
obtain an example where [0, 1] is the value support, simply replace v in the definition of
F (v) with 1− v + vv.
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auctions then efficiently allocate the remaining units among the remaining

bidders. When k > 2, the efficient equilibria that the strategies define from

the second auction on are asymmetric and similar to the equilibrium in Figure

1 (Section 2).

The following functions will enter into the construction of the equilibrium

bidding functions at auctions with l units and m participants.

Definitions: Let w be in (0, 1), l,m be such that 1 < l < m, and G be

a probability distribution over [0, 1].

(i) eβ[l,m;G]is the function whose value at v in [0, 1] is:
EeV∼G

³eV(l,m−1)|V(1,m−2) = v
´
.

(ii) β[l,m;w] is the function eβ[l,m;G] where G = F |[0,w].11

Therefore, eβ[l,m;G] (v) is the expectation of the lth highest among m − 1
independent values, m − 2 of which are iid according to F conditional on

their maximum’s being v, and the remaining one eV is distributed according

to G (see Section 3 for the notations for order statistics).

The first-auction bidding function I now construct from a y in (0, 1) agrees

with MW’s bidding function outside a neighborhood [x, z] of y, whose ex-

tremities x, z satisfy the condition (1) below:Z z

x

³
E
¡
y ∧V(k,n−1)|V(1,n−1) = u

¢− β[k,n;y] (u)
´
dF (u)n−1 = 0. (1)

Lemma 5 below implies the existence of such neighborhoods [x, z] that can

be arbitrarily small, and where the integrand in the LHS above changes its

sign only once, from negative to positive.

11Alternative expressions for β[l,m;w] are: E
¡
V(l−2,m−3) ∧

¡
V(l−1,m−3) ∨V

¢ |V(1,m−3) ≤ v;V ≤w¢
if 2 < l < m; E

¡
v ∧ ¡V(1;m−3) ∨V

¢ |V(1;m−3) ≤ v;V ≤w¢ if l = 2 and m > 3; and
E (v ∧V|V ≤ w) if l = 2 and m = 3.
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Lemma 5: Let k, n be such that 2 ≤ k < n.

(i) For all y in (0, 1), the integrand in the LHS of (1) is a strictly
negative function of u in (0, y).

(ii) For all y in (0, 1) and all x in (0, y) sufficiently close to y, there
exists a solution z in (y, 1) to (1) that tends towards y with x and such that

the integrand is strictly positive for all u in (y, z).

Proof : See Appendix B.

From a triple (x, y, z) as in Lemma 5 (ii) and with x close enough to

y that β[k,n]MW (z) ≤ y, I define the bidders’ strategies τ [x,y,z]1 , ...., τ
[x,y,z]
n first

by what they recommend at the first auction and then at all subsequent

auctions. The strategy τ [x,y,z]i of bidder i inN = {1, ..., n} is an undominated
strategy that recommends to bid at the first auction according to MW’s

equilibrium strategy when not all bidders participate and according to the

bidding function βi below when they all participate:

β2 = ... = βn = I[x,z]β
[k,n;y] +

¡
1− I[x,z]

¢
β
[k,n]
MW ,

β1 = β
[k,n]
MW (x) I[x,y) + β

[k,n]
MW (z) I[y,z] +

¡
1− I[x,z]

¢
β
[k,n]
MW ,

where I[x,y), I[y,z], and I[x,z] are indicator functions12. Thus, the bidding

functions differ from MW’s equilibrium bidding function β
[k,n]
MW only within

[x, z]. Bidder 1’s bidding function jumps up at y from the constant β[k,n]MW (x)

to the constant β[k,n]MW (z). The other bidders’ common bidding function jumps

up at x and z and is equal to β[k,n;y] between these values. See Figure 3 below.

12For example, I[x,y) (v) is equal to 1 if v belongs to [x, y), and 0 otherwise.
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Figure 3: Equilibrium bidding functions at the first auction with n > 3.

Example: k = 2

With two units, the equilibrium requirement of sequential rationality re-

duces to the optimality of the first-auction bidding functions and only under

full participation, as I have assumed the strategies coincide with MW’s equi-

librium strategy under partial participation.

In the particularly simple case of n = 3 bidders, the definition of β[k,n;y] (v)

reduces to:

β[2,3;y] (v) = E (v ∧V|V ≤ y) , (2)

as the distributions of V conditioned on V ≤ y and of eV are identical. By

using y as an intermediate bound of integration13, the condition (1) becomes

(3) below, and Lemma 5 is immediate in this case:Z y

x

(E (V|V ≤ u)−E (u ∧V|V ≤ y)) dF 2 (u)

+ (y −E (V|V ≤ y)) (F (z)− F (y))2 = 0. (3)

The mathematical expression in (2) for β[2,3;y] (v), with v in [x, z], satisfies the

first-order condition for optimality, according to which the bid from a bidder

13And expanding E (y ∧V|V < u) as the sum of E (V|V < y)F (y) /F (u) and
y (F (u)− F (y)) /F (u).
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i 6= 1 should be the expected “effective” price he would pay at the second

auction—the minimum of his value and the value of his remaining competitor,

here bidder 1—after losing a tie for highest bidder at the first auction. As

Figure 4 illustrates, β[2,3;y] takes the constant value β[2,3]MW (y) over [y, z], and

bidders 2 and 3 with values in this interval are indifferent between losing and

winning a tie between them at this bid. Moreover, any bidder i 6= 1 with

value v is indifferent about the outcome of a tie with bidder 1 at β[2,3]MW (x)

when v = x and at β[2,3]MW (z) when v = z. Supermodularity (Lemma 1) then

implies the optimality of bidders 2 and 3’s bidding function.14

From (3), the expected payoff of bidder 1 with value y reaches its max-

imum over the jump
h
β
[2,3]
MW (x) , β

[2,3]
MW (z)

i
at both its extremities. In fact,

the expected payoff decreases over
h
β
[2,3]
MW (x) , β

[2,3]
MW (y)

´
and the integral in

(3) is its change over this semi-open interval. “Jumping over” β[2,3]MW (y) does

not change the expected payoff conditional on at most one bid from bidders

2 and 3 being equal to β
[2,3]
MW (y). The second term in the LHS of (3) ac-

counts for the—positive—change in the expected payoff conditional on both

bids from bidders 2 and 3 being equal to β[2,3]MW (y). Optimality of bidder 1’s

bidding function follows immediately from supermodularity. Therefore, the

triple (β1, β2, β3) defines an equilibrium.

As I show in Lemma C1 in Appendix C, the price process in this equi-

librium is not a martingale, a supermartingale, or a submartingale. Figure

4 illustrates this fact, with the arrows indicating the directions from current

prices towards the expected future prices.

14Optimality could also be obtained via Milgrom (2004, pp.103-104)’s sufficiency theo-
rem, with its assumptions slightly weakened to be satisfied here. However, the simplicity
of the bidding functions allows for a direct application of supermodularity.
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Figure 4: First-auction equilibrium bidding functions under full

participation with k = 2 and n = 3. From current prices, the arrows point

towards the expected future prices.

Nevertheless, the equilibrium allocates the units inefficiently if and only

if all three bidders’ values are in [y, z] and bidder 1 has the lowest value. In

this case, bidder 1 is the inefficient winner of the first auction, as he follows

a higher bidding function over this interval. When F is not −3-concave
everywhere, x, y, z exist such that F is strictly −3-convex over [y, z]. From
Lemma 3 in the previous section, the expected price will then decrease strictly

along the corresponding equilibrium, and the converse of the implication in

Lemma 4 follows for k = 2 .

The arguments extend straightforwardly15 to more than three bidders,

and the bidding-function profile (β1, ..., βn) above defines an equilibrium.

Contrary to the three-bidder case, no tie occurs with strictly positive prob-

ability, as the bidding function of all bidders i 6= 1 is strictly increasing (see
Figure 3 above). With strictly positive probability, each such equilibrium

will result in an inefficient allocation, wherein the two highest-value bidders

are outbid by bidder 1 with a lower value, thanks to bidder 1’s higher bidding

function over the interval [y, z]. Lemma 6 below follows.

15Except the proof of Lemma 5, which is immediate only when n = 3.
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Lemma 6: There exist equilibria of SSPA(2,3) where the expected price
sequence is decreasing if and only if F is not −3-concave everywhere, in
which case there also exist such equilibria of SSPA( 2,n) for all n ≥ 3.

6. Construction of equilibria: the strategies after the first auction

The example k = 2 in the previous section ended the construction in the

two-unit case. Therefore, I may now assume more than two units, that is,

2 < k < n. By having the strategies recommend MW’s equilibrium strategy

τMW at all auctions if not all bidders participated in the first, I may focus on

the case of full participation in the first auction. However, even in this case,

I need to specify the strategies at all later auctions, whether participation is

maximal or not, as beliefs may be asymmetric. From the second auction on,

that is, for s ≥ 2 below, the strategies τ [x,y,z]1 , ..., τ
[x,y,z]
n , with x, y, z as in the

previous section, are as follows:

• At the sth auction where 1 /∈ P(s), τ [x,y,z]1 , ..., τ
[x,y,z]
n agree with τMW .

• At the sth auction where 1 ∈ P(s), with k − s+ 1 <
¯̄P(s)¯̄ and s < k:

— (a) τ [x,y,z]1 recommends to bid 0;

— (b) for i ∈ P(s) \ {1}:
(b.1): if b(1)i /∈

n
β
[k,n]
MW (x) , β

[k,n]
MW (z)

o
or if b(1)i 6= b

(1)
w , then

τ
[x,y,z]
i recommends to follow the bidding function eβ[l,m;Gi]

,

where l = k − s + 1, m =
¯̄P(s)¯̄, and Gi represents the be-

liefs about bidder 1’s value that bidder i revised after having

observed the history
³
vi,P(1), b(1)i , b

(1)
w ,P(2)

´
.

(b.2): if b(1)i = b
(1)
w = β

[k,n]
MW (x) or b

(1)
i = b

(1)
w = β

[k,n]
MW (z),

τ
[x,y,z]
i maximizes bidder i’s expected payoff, conditionally on

his observed history, bidder 1’s following τ
[x,y,z]
1 in (a), and

all other bidders j’s following their strategies τ
[x,y,z]
j under

the assumption in (b.1).
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In agreement with the definition of equilibrium in Section 3, a loser to

an auction always revises his beliefs while assuming that all other losers

never previously deviated. Also, P(s) above is the set of participants in the
sth auction, b(1)i and b

(1)
w are bidder i’s bid and the winning bid at the first

auction, and vi is bidder i’s value. Finally, k − s + 1 and
¯̄P(s)¯̄ are the

numbers of units and participants at the sth auction.

According to the strategies τ [x,y,z]1 , ..., τ
[x,y,z]
n , bidders i 6= 1 should follow

MW’s equilibrium strategy at any auction bidder 1 does not participate in.

From (a), if bidder 1 lost the first auction, he should bid 0 at all other

auctions before the last. Consequently, once a bidder i 6= 1 has revised his
beliefs about bidder 1’s value to Gi at the start of the second auction, he

will never revise them again. If the assumption in (b.1) holds, bidder i 6= 1’s
bidding functions eβ[l,m;Gi]

at all remaining auctions will only change with the

number l of remaining units and m of participants. Therefore, bidder i 6= 1’s
behaviour after the first auction should not depend on whether he previously

deviated and should no longer be affected by winning bids. If the assumption

holds for all bidders i 6= 1 active after the first auction, they will all have the
same beliefs G about bidder 1’s value, and all should use the same bidding

functions.

If the first-auction winning bid b
(1)
w was β[k,n;y] (w), strictly inside β1’s

discontinuity jump (see Figure 3 in the previous section), any bidder i 6= 1
participating in a subsequent auction along with bidder 1 should then follow

β[l,m;y], as his revised beliefs Gi would be F |[0,y]. If the first-auction winning
bid was instead β

[k,n]
MW (w

0), outside the discontinuity jump, F |[0,w0] would be
bidder i’s beliefs and his bidding function would be β[l,m;w

0]. See Figure 5

below, where I denote β(2)j bidder j’s bidding function at the second auction,

for j in P(2).16
16I assume n > 3 in Figure 5. If n = 3 and hence k = 2, β[l,m;y] would be constant

past y in the left-hand diagram and β[l,m;w
0] would be constant past w0 in the right-hand

diagram.
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Figure 5: Equilibrium bidding functions at the second auction in which

bidders 1, ..., n− 1 participate, when the first-auction winning bid was
β[k,n;y] (w) (left-hand diagram) and β

[k,n]
MW (w

0) (right-hand diagram) in

Figure 3. Only bidders who deviated at the first auction use the dotted

parts of the functions’ graphs.

Finally, if a bidder different from bidder 1 won the first auction by having

deviated to one of the two mass points of bidder 1’s bidding strategy, the

revised beliefs about bidder 1’s value of any other bidder i 6= 1 would no

longer be the restriction of F to some interval. For example, if β[k,n]MW (z) was

the winning bid, they would be a combination γiF |[0,y] + (1− γi)F |[y,z] for
some 0 < γi < 1, as bidder 1’s losing the first auction reduces the likelihood

of his tying for winner, which would happen if his value belonged to [y, z]. If

bidder i did not tie with the winner, hence under the assumption in (b.1),

γi = 2F (y) / (F (z) + F (y)). If bidder i also deviated and tied with the

winner, hence under the assumption in (b.2), γi = 3F (y) / (2F (z) + F (y)).

According to (b.2), bidder i’s strategy would then solve a dynamic program-

ming problem and could be found by recursion. However, as these last cases

occur only if the winner of the first auction deviated, they play no role in the

equilibrium condition of no profitable unilateral deviation by bidder i at the

first auction.

From Lemma 7 below, τ [x,y,z]1 , ..., τ
[x,y,z]
n form an equilibrium with ineffi-
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ciency confined to an arbitrarily small neighborhood of y. Furthermore, the

expected price they generate after the first auction stays constant, as the

price sequence becomes a martingale.

Lemma 7: Let y be in (0, 1), k, n be such that 2 < k < n, and ε be

strictly positive. Then, there exist x, z as in Lemma 5 (ii) with x < y < z <

y + ε such that β[k,n]MW (z) ≤ y and:

(i)
³
τ
[x,y,z]
1 , ..., τ

[x,y,z]
n

´
is an inefficient equilibrium of SSPA(k,n),

with inefficiency confined to [y, z];

(ii) along its path, the price process starting at the second auction is
a martingale.

Proof: See Appendix D.

To prove Lemma 7, I first show by induction on the number of remaining

units that the strategies are sequentially rational after the first auction when

(b.1) in the definition of τ [x,y,z]i above applies to all bidders i 6= 1. I take the
distance z − y small enough for the participating bidder 1 with the highest

possible value 1 to be willing to bid 0. The first-order optimality condition

for the bidding functions of the bidders i 6= 1 follows from the property below
of the functions eβ[l,m;G] (Lemma D1 in Appendix D):

eβ[l,m;G] (v) = E
³eβ[l−1,m−1;G] ¡V(2,m−2)

¢ |V(1,m−2) = v
´
, (4)

for 2 < l < m. Once I have proved the sequential rationality of the strategies

after the first auction, I can use similar arguments to those in the two-unit

case to prove their optimality at the first auction.

Along the equilibrium path, the k − 1 units that remain after the first
auction are efficiently allocated to the remaining bidders. This is immediate

if bidder 1 wins the first auction, as the other bidders will follow MW’s

strategy. If bidder 1 loses the first auction, all remaining units except one will

be allocated before the last auction to the bidders i 6= 1 with highest values.
The one remaining unit will go to the bidder with the highest value among

20



all remaining bidders at the last auction. Therefore, inefficiency occurs only

at the first auction, when all k highest values and the strictly lower value

of bidder 1 belong to [y, z]. The martingale property after the first auction

follows from (4) with l > 2 and the definition of eβ[l,m;G] with l = 2.

From Lemma 7, when F is not − (k + 1)-concave everywhere, there will
exist an inefficient equilibrium with inefficiency confined to an interval [y, z]

where F is strictly − (k + 1)-convex. From the marginal-revenue analysis

(Lemma 3, Section 4), the last expected price EPk along this equilibrium’s

path will be below average. However, from Lemma 7 again, all prices from

the second auction on will be equal in expectation, that is, EP2 = ... = EPk.

Consequently, the expected price sequence must be such that EP1 > EP2 =

... = EPk. The converse of Lemma 4 (Section 4) for k > 2 and Lemma 8

below follows.

Lemma 8: For k > 2, there exist equilibria of SSPA(k,k+ 1) where the

expected-price sequence is decreasing if and only if F is not −(k+1)-concave
everywhere, in which case there also exist such equilibria of SSPA( k,n) for

all n ≥ k + 1.

7. The main result

Gathering the results, Lemma 2 in Section 3, Lemma 6 in Section 5, and

Lemma 8 in the previous section imply the following theorem.

Theorem: Assume k > 1. The three following statements are equivalent:

(i) supw∈(0,1)
d ln f

d lnF
(w) > k + 2, that is, F is not − (k + 1)-concave

everywhere.

(ii) There exist equilibria of SSPA(k,k+1) with decreasing expected-
price sequences.

(iii) For all n ≥ k+1, equilibria of SSPA(k,n) exist with decreasing

expected-price sequences.
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Thus, with k units and any larger number of bidders, equilibria with de-

creasing expected prices exist as soon as the value ccdf is not−(k+1)-concave
everywhere. With one more bidder than units, only under this condition on

the value distribution can such equilibria exist.

8. Conclusion

In the Milgrom and Weber’s IPV model of the sequential second-price

auction with k units, equilibria with decreasing expected prices exist for all

larger numbers of bidders if and only if the value complementary cumulative

function is not −(k + 1)-concave everywhere. While this result holds for
sequentially rational equilibria where no player follows a dominated strat-

egy, further research should investigate its robustness to the imposition of

additional requirements on the equilibria. Also left for future research is

describing all equilibria, satisfying the same or stronger definitions, and the

price movements along their paths.

APPENDICES
Appendix A

In Figure 1 (Section 2), bidders 2 and 3 follow the same bidding function

β (v) = E (v ∧V). Bidder 1 bids 0 for all values.
As is easily checked, the bid β (v) satisfies the first-order condition for

optimality. A slight bid increase from β (v) by bidder 2 with value v matters

only when it makes him win the first auction by avoiding a near tie with

bidder 3. In this case, he receives the payoff v−β (v), rather than the payoff

v − E (v ∧V1), where V1 is bidder 1’s value, he would have received by

competing with bidder 1 at the second auction. As both payoffs are equal,

the first-order condition is satisfied. Global optimality of β (v), for any value

v, then follows from the supermodularity of a bidder’s total expected payoff

in his value and first-auction bid (by Lemma 1 in Section 3).17

17It also follows from Milgrom’s sufficiency theorem (2004, pp. 103-104). Of course, un-
der differentiability, supermodularity implies the smooth single crossing differences prop-
erty.
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With value v = 1, bidder 1’s payoff would decrease if he increased his bid

since the first-order effect of an increase from any β (w) would be negative,

as the difference between 1−β (w) and 1−E (Vi|Vi ≤ w) is negative, where

Vi is bidder i’s value for i = 2 or 3. It follows from supermodularity that

bidding 0 is optimal for bidder 1 no matter what his value is.

In the equilibrium displayed in Figure 2 (Section 2), the bidders follow

MW’s equilibrium bidding function, which I denote β
[2,3]
MW (v), outside an

interval [0, η] and follow the bidding functions β1 (v) = E (v ∧V|V ≤ ϕ (v))

and β2 (v) = β3 (v) = E (ϕ−1 (v) ∧V|V ≤ v) over [0, η]. Here, the “matching

function” ϕ = β−1i ◦ β1, i = 2, 3, is the unique solution to the differential

equation below with initial condition ϕ (η) = η:

d lnF (ϕ (v))

d lnF (v)
=

E (V|V ≤ ϕ (v))−E (v ∧V|V ≤ ϕ (v))

E (v ∧V|V ≤ ϕ (v))− E (V|V ≤ v)
.

From its definition, the bidding function β1 already satisfies the first-order

condition. The differential equation above comes from the first-order condi-

tion the bidding function β2 = β3 should satisfy. The RHS of this equation

can also be written as E(V−v|v≤V≤ϕ(v))
E(v−V|V≤v) , which extends as a continuously dif-

ferentiable function with value 0 at (v, ϕ (v)) where v = ϕ (v) > 0.

With the singularity at the initial condition so removed, the standard

theorems on differential equations apply, and a solution ϕ indeed exists and

is unique. As the derivative of this solution ϕ vanishes at η and would vanish

at any value v > 0 where ϕ (v) and v were equal, it can be continued to the

left of η over the interval (0, η], while being strictly increasing and strictly

above the identity function. If its limit ϕ (0) for v approaching 0 was strictly

positive, d lnF (ϕ(v))
d lnF (v)

above would become infinite, hence larger than 1, and

F (ϕ (v)) /F (v) would be increasing with a finite limit at v = 0, which would

contradict ϕ (0) > 0. Consequently, ϕ (0) = 0.

By construction, the bidding functions satisfy the first-order optimality
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conditions. From supermodularity,18 they form an equilibrium.

The uniform distribution is an example where the equation for this equi-

librium is easily solved. In this case, ϕ (v) = 2v
1+(v/η)2

, β1 (v) = v 3−(v/η)
2

4
, and

β2 (v) = β3 (v) = β1 (ϕ
−1 (v)) over [0, η], and all bidding functions are equal

to β[2,3]MW (v) = v/2 outside of [0, η].

Appendix B

Proof of Lemma 1 (Section 3): Increasing his first-auction bid from
b0 to b00 would only change the payoff of a bidder i with value vi if it al-

lowed him to win against the highest bid b from the other participating

bidders. In this case, bidder i’s payoff would be vi − b, instead of the ex-

pected payoff πi (vi|b, b0, b00) he would have obtained by acting optimally after
losing the first auction. In this latter case, let qi (vi|b, b0, b00) be his probabil-
ity of receiving a unit. From standard incentive-compatibility arguments,

πi (vi|b, b0, b00) is not larger than πi (wi|b, b0, b00) + (vi − wi) qi (vi|b, b0, b00) and
hence than πi (wi|b, b0, b00) + vi − wi, for any other possible value wi smaller

than vi. Therefore, (vi − b)− πi (vi|b, b0, b00) ≥ (wi − b)− πi (wi|b, b0, b00), and
supermodularity, here equivalent to the nondecreasing differences property,

follows. ||

Proof of Lemma 3 (Section 4): The expected difference∆ =
k−1P
t=1

E (Pt)−

(k − 1)EPk is equal to E
µ

kP
t=1

Pt

¶
−kEPk. As for the two-unit examples in

Section 2, E
µ

kP
t=1

Pt

¶
is the expected sum of the marginal revenues at the

winners’ values, due to the revenue-equivalence theorem and the fact that

no payoff goes to any bidder with value 0. These winners’ values are the k

18Or, through Milgrom (2004)’s sufficiency theorem.
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highest when the allocation is efficient. Therefore, ∆ is equal to:

E

⎛⎝ PT
i=1MR(1)

³
V
(Wi,n)

´
+Pk

i=1
i6=L1,..., LT

MR(1)
¡
V(i,n)

¢− kV(L1,n)|INEF (σ)

⎞⎠Pr (INEF (σ))

+E

Ã
kX
i=1

MR(1)
¡
V(i,n)

¢− kV(k+1,n)|EFF (σ)
!
Pr (EFF (σ)) ,

where EFF (σ) is the complementary event of INEF (σ) and, conditional

on INEF (σ), V
(W1,n)

, ...,V
(WT,n)

are the inefficient winners’ values and

V
(L1,n)

, ...,V
(LT,n)

the inefficient losers’ values, withWT > ... > W1 > k ≥
LT > ... > L1. It follows from the uniform k + 1th-price auction’s being the

Vickrey-Groves-Clarke mechanism, that 0 = E
³Pk

i=1MR(1)
¡
V(i,n)

¢− kV(k+1,n)

´
.

Subtracting this equality from the previous expression for ∆ gives the new

expression:

E

⎛⎝ PT
i=1MR(1)

³
V
(Wi,n)

´
+ kV(k+1,n)

−
³PT

i=1MR(1)

³
V
(Li,n)

´
+ kV(L1,n)

´
|INEF (σ)

⎞⎠Pr (INEF (σ)) .(B.1)

If k = n − 1, the only possible inefficient winner is the bidder with the
lowest value V(k+1,k+1), that is, T = 1 andW1 = k + 1. The equality in the

statement of the lemma follows from Lemma 2 (i) (Section 2).

Conditional on INEF (σ) in the general case k ≤ n− 1, the inequalities
V(Wi,n) ≤ V(k+1,n) ≤ V(k,n) ≤ V(Li,n) hold for all 1 ≤ i ≤ T. As V(Wi,n)

and V(Li,n) (almost surely) belong to I, so do V(k+1,n) and V(k,n). Under −1-
convexity of F over I, MR(1) is nonincreasing (from Lemma 2) and, therefore,

MR(1)

³
V
(Wi,n)

´
≥ MR(1)

¡
V(k+1,n)

¢ ≥ MR(1)
¡
V(k,n)

¢ ≥ MR(1)
¡
V(Li,n)

¢
,

for all 1 ≤ i ≤ T. The expression (B.1) then implies the following lower
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bound for ∆:

E

⎛⎜⎜⎝
(T− 1) ¡MR(1)

¡
V(k+1,n)

¢−MR(1)
¡
V(k,n)

¢¢
+
¡
MR(1)

¡
V(k+1,n)

¢
+ kV(k+1,n)

¢
−
³
MR(1)

³
V

(L1,n)

´
+ kV(L1,n)

´
|INEF (σ)

⎞⎟⎟⎠Pr (INEF (σ))

≥ E

Ã
MR(1)

¡
V(k+1,n)

¢
+ kV(k+1,n)

−
³
MR(1)

³
V

(L1,n)

´
+ kV(L1,n)

´
|INEF (σ)

!
Pr (INEF (σ)) ;

and the inequality in the statement of the lemma follows from Lemma 2 (i).

||

Proof of Lemma 5 (Section 5): Let D (y, u) be the integrand in (1).
It is equal to the following difference:

E
¡
y ∧V(k,n−1)|V(1,n−1)=u

¢− EeV∼F
³eV(k,n−1)|V(1,n−2) = u;eV ≤ y

´
, (B.2)

which is strictly negative for u < y. (i) is proved. Differentiating19 D (u, u) =

0 gives
³

∂
∂y
D (y, u)

´
y=u

+
¡
∂
∂u
D (y, u)

¢
y=u

= 0, for all u in (0, 1). It is easily

verified that
³

∂
∂y
D (y, u)

´
y=u

< 0. In fact, the derivative with respect to y

of the first term in (B.2) vanishes at y = u. The second term is equal to

EeV∼F
³
h
³eV, u

´
|eV ≤ y

´
, where h (v, u) = E

³eV(k,n−1)|V(1,n−2) = u;eV = v
´
.

Its derivative with respect to y at y = u is strictly positive, as h (v, u) is a

nondecreasing function of v in (0, 1) that is strictly increasing over (0, u).

Therefore, the inequality
¡
∂
∂u
D (y, u)

¢
y=u

> 0 must hold, for all u = y in

(0, 1).

Let y be in (0, 1). FromD (y, y) = 0 and the last inequality in the previous

paragraph, D (y, u) is strictly positive for all u > y sufficiently close to y.

(ii) then follows. Indeed, there exists z0 > y such that D (y, u) > 0 for all u

in (y, z0). For all x < y sufficiently close to y: 0 < − R y
x
D (y, u) dFn−1 (u) <

19Joint differentiability in (y, u) follows from the joint continuity of the partial deriva-
tives.
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R z0
y
D (y, u) dFn−1 (u). For each such x, a unique z in (y, z0) exists such that

− R y
x
D (y, u) dF n−1 (u) =

R z
y
D (y, u) dF n−1 (u), that is, such that (1) holds.

The last equality implies that this z tends towards y if x does. ||

Appendix C

Lemma D1:20 Let β1, β2, β3 be the first-auction bidding functions under
full participation in an equilibrium of SSPA(2,3) as in the example k = 2 of

Section 5. Then:

(i) E
³
P2|P1 = β

[2,3]
MW (x)

´
= β

[2,3]
MW (x) and E (P2|P1 = p) = p, for

almost all p outside
h
β
[2,3]
MW (x) , β

[2,3]
MW (z)

i
;

(ii) E
³
P2|P1 = β

[2,3]
MW (z)

´
< β

[2,3]
MW (z) (Arrow 1 in Figure 4);

(iii) E
³
P2|P1 = β

[2,3]
MW (y)

´
> β

[2,3]
MW (y) (Arrow 2 in Figure 4);

(iv) E (P2|P1 = p) < p, for almost all p in
³
β[2,3;y] (x) , β

[2,3]
MW (y)

´
(Arrow 3 in Figure 4).

Proof:: Proof of (i): The statement can be proved in the same way the
martingale property of MW’s equilibrium is. Note that conditional on P1 =

β
[2,3]
MW (x), bidder 1 is almost surely the second highest bidder at the first

auction.

Proof of (ii): Conditional on P1 = β
[2,3]
MW (z), bidder 1 with value in [y, z]

is the almost-sure second highest bidder at the first auction. Therefore, the

expected price at the second auction will be E (Vi∧V1|V1 ∈ [y, z] ; Vi < z),

where Vi is the value of the other bidder, bidder 2 or 3, who remains at the

second auction. As it is strictly smaller than E (V|V < z) = β
[2,3]
MW (z), (ii)

follows.

Proof of (iii): If bidder 1 wins the first auction and both bidders 2 and

3 have submitted β
[2,3]
MW (y), bidders 2 and 3’s values belong to [y, z] and

the expected second-auction price will be E (V2∧V3|V2,V3 ∈ [y, z]), which
20Because the derivatives of β[2,3]MW and β[2,3;y] are continuous and different from zero over

(0, 1) and (x, y), respectively, “almost all” in (i) and (iv) below means “Lebesgue-measure
almost all.”
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is strictly larger than the first-auction price β[2,3]MW (y) = E (V|V < y). The

expected price does not change from the first-auction price β[2,3]MW (y) in the

other possible cases.

Proof of (iv): The second-auction price only differs in expectation from

the first-auction price β[2,3;y] (v) with v in (x, y) if bidder 1 wins the first

auction. In this case, the second highest bidder at the first auction will win

the second auction and pay E (V|V < v) in expectation, which is smaller

than β[2,3;y] (v) = E (v ∧V|V < y). ||

Appendix D

I denote º and Â the weak and strict relations of first-order stochastic

dominance.21 I call a distribution G acceptable if it is absolutely continuous

and has an interval [0, vG] ⊆ [0, 1] as support.
Lemma D1: For all 1 < l < m, u in (0, 1], and probability distributions

G and H over [0, 1]:

(i) if G º H, then eβ[l,m;G] ≥ eβ[l,m;H].
(ii) β[l,m;u] (u) = β

[l,m]
MW (u)

(iii) if G Â F |[0,u], then eβ[l,m;G] (u) > β
[l,m]
MW (u).

(iv) if l > 2, eβ[l,m;G] (v) = E
³eβ[l−1,m−1;G] ¡V(2,m−2)

¢ |V(1,m−2) = v
´
.

(v) if G is an acceptable distribution: eβ[l,m;G] is continuous; eβ[l,m;G]
is strictly increasing everywhere if (l,m) 6= (2, 3); and eβ[2,3;G] is strictly
increasing over [0, vG] and constant over [vG, 1].

Proof: From its definition, β[l,m;u] (u) isEeV∼F
³eV(l,m−1)|V(1,m−2) = u;eV ≤ u

´
,

that is, E
¡
V(l,m−1)|V(1,m−1) = u

¢
, which is β[l,m]MW (u). (ii) follows, and (iii) is

then an immediate consequence of the definition of eβ[l,m;G]. (i) and (v) also
follow immediately from this definition.

IfU(1,m−2),U(2,m−2) are order statistics of the same random sample ofm−
2 values drawn according to F independently of all other random variables,

21G Â H if and only if G º H and G 6= H.
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the RHS of the equality in (iv) is:

E
³eβ[l−1,m−1;G] (U2,m−2) |U(1,m−2) = v

´
= E

³
EeV∼G

³eV(l−1,m−2)|V(1,m−3) = U(2,m−2)
´
|U(1,m−2) = v

´
= EeV∼G

³eV(l−1,m−2)|V(1,m−3) = U(2,m−2) ≤ U(1,m−2) = v
´
.

As l−1 ≥ 2, the inequality eV(l−1,m−2) ≤ V(1,m−3) holds in the last conditional

expectation above. Consequently, this expectation is alsoEeV∼G
³eV(l,m−1)|V(1,m−2) = v

´
,

which is eβ[l,m;G] (v). (iv) is proved. ||
The definitions below of the strategies µ1 and µ

[G]
i , i 6= 1, simplify the

statements and proofs of the next lemmas. In case (b.1) (Section 6) of their

definitions, τ [x,y,z]1 and τ
[x,y,z]
i , i 6= 1, reduce to such strategies after the first

auction.

Definitions: Let G be a probability distribution over [0, 1] and k, n be

such that 1 < k < n.

(i) µ
[G]
i is the undominated strategy in SSPA(k,n) that, when l > 1

units remain and m > l bidders participate, recommends bidder i 6= 1 to

follow eβ[l,m;G] if bidder 1 is among the participants and β
[l,m]
MW if he is not.

(ii) µ1 is the undominated strategy in SSPA(k,n) that recommends

bidder 1 to bid 0 at any auction before the last.

In Lemma D2 below, the requirement that the other participants in an

auction are believed to have previously followed their strategies still applies

(see Section 3).

Lemma D2: Let y be in (0, 1) and k, n be such that 1 < k < n. Then:

(i) For all w, v in [0, 1] and acceptable distribution G, following µ[G]i

is sequentially rational in SSPA(k,n) for bidder i 6= 1 with value v when he

believes that:
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. all bidders j 6= 1, i have their values initially iid according to
F |[0,w] and follow µ

[G]
j after entering the first auction; and

. bidder 1 has his value initially distributed according to G and

follows µ1 after entering the first auction.

(ii) There exists δ > 0 such that, for all w, v in [0, 1] and acceptable
distribution G, if (ii.1) G º F |[0,w] or (ii.2) w ∈ [y, y + δ] and G º F |[0,y],
then: following µ1 is sequentially rational in SSPA(k,n) for bidder 1 with

value v when he believes that all bidders i 6= 1 have their values initially iid
according to F |[0,w] and follow µ

[G]
i after entering the first auction.

Proof: Proof of (i): I prove that if the statement (i) holds true for all k0

such that 1 < k0 < k, then it also holds true for k. The result will follow by

induction on k, as the induction hypothesis is trivially satisfied for k = 2.

Assume k < m ≤ n, where m is the number of participants in the first

auction. As the sequential auction goes on, bidder i’s beliefs about the

other participating bidders’ values will still satisfy the assumptions in (i):

the distribution of bidder 1’s value will remain G and the distribution of

any other bidder j 6= i’s value will be the restriction of F to some common

interval [0, w0], with [0, w0] ⊆ [0, w].
I may assume bidder 1 participates at the first auction, as the optimal-

ity of µ[G]i follows from MW otherwise. Under this assumption, I only need

to prove the optimality of eβ[k,m;G] (v) for bidder i at the first auction when
he follows µ[G]i in the subsequent auctions. However, for v ≤ w, if bidder

i lost a tie for highest bidder at eβ[k,m;G] (v), the expected price he would
effectively pay at the next auction would also be eβ[k,m;G] (v). This follows
from Lemma D1 (v), the definition of eβ[k,m;G] (v) when k = 2, and Lemma

D1 (iv) when k > 2. In the latter case, eβ[k,m;G] (v) is the expected price
E
³eβ[k−1,m−1;G] ¡V(2,m−2)

¢ |V(1,m−2) = v
´
bidder i would actually pay at the

next auction. When k = 2, m = 3, bidder i with value v in the inter-

val [vG, 1] is indifferent between winning and losing the tie at the constant

value of eβ[2,3;G] over this interval. Supermodularity implies the optimality of
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eβ[k,m;G] (v) for any v ≤ w, as well as the optimality of any bid at or aboveeβ[k,m;G] (w), in particular eβ[k,m;G] (v), for any value v ≥ w.

Proof of (ii): As for (i), I prove (ii) by induction on k and first assume it

holds true for all k0 such that 1 < k0 < k. Let δk0 be the δ whose existence

(ii) assures for k0, y, and n,22 and let δ0 be the strictly positive minimum of

these δk0’s over all k0 such that 1 < k0 < k.

Letm > k be the number of participants. As long as there remain at least

two units, bidder 1’s beliefs about the other bidders’ values can only become

the product of the same restriction of F to an interval [0, w0] smaller than

[0, w]. Consequently, assumption (ii.1) or (ii.2) will be satisfied. If δ < δ0, I

may assume bidder 1 bids 0 after the first auction.

From Lemma D1 (v), slightly increasing his bid from eβ[k,m;G] (u), with
u ∈ (0, w ∧ vG), would only change the payoff of bidder 1 with value 1
if it made him win, in which case he would save the difference between

E
¡
V(k,m−1)|V(1,m−1) = u

¢
= β

[k,m]
MW (u), which he would have paid at the last

auction, and eβ[k,m;G] (u) he would pay at the first. But, by Lemma D1 (iii),
β
[k,m]
MW (u) − eβ[k,m;G] (u) is strictly negative for all u < w under (ii.1), where

vG ≥ w, and for all u < y under (ii.2), where vG ≥ y. By supermodularity,

bidding 0 as µ1 recommends is better than submitting any bid under (ii.1)

and any bid in
³
0, eβ[k,m;G] (y)´ under (ii.2). In particular, optimality under

(ii.1) is proved.

Under assumption (ii.2), LemmaD1 (i) implies eβ[k,m;G] (u) ≥ eβ[k,m;F |[0,y]] (u) =
β[k,m;y] (u), for all u in (0, y), and the change in payoff due to increasing the

bid from 0 to any bid at or above eβ[k,m;G] (y) is not larger than:⎧⎨⎩
yZ
0

³
β
[k,m]
MW (u)− β[k,m;y] (u)

´
dF (u)m−1 +

¡
F (w)m−1 − F (y)m−1

¢⎫⎬⎭ /F (w)m−1 .

22It is not necessary to decrease n to the maximal number n− (k − k0) of participants
when k0 units will remain.
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Up to the factor F (w)−(m−1), the first term between braces is an upper bound

of the change from a bid increase to eβ[k,m;G] (u) for u→< y. A further increase

of the bid is consequential only if it allows bidder 1 to win the first auction,

in which case the change in payoff is the difference between the current and

future prices. As this difference does not exceed 1 and the probability of

this event does not exceed 1− (F (y) /F (w))m−1, the product of the second
term and F (w)−(m−1) bounds the expected change due to such a further bid

increase.

By Lemma D1 (iii), the first term is strictly negative. The second term

vanishes at the limitw→> y. As a consequence, there exists 0 < δm < δ0 such

that bidding 0 is optimal for bidder 1 with value 1 if w−y < δm. Optimality

of bidding 0 for bidder 1 with any value follows from supermodularity.

Statement (ii) for k follows by taking δ equal to δ = ∧ {δm|k < m ≤ n},
which is strictly positive. ||

Lemma D3: For 2 < k < n, consider SSPA(k,n) where the bidders’

values are distributed independently: each bidder i 6= 1’s according to F |[0,w],
with w in [0, 1], and bidder 1’s according to an acceptable distribution G.

If the bidders follow the strategies µ1, µ
[G]
2 , ..., µ

[G]
n , the allocation is efficient

almost surely and the price process is a martingale.

Proof: Almost surely, the lowest value belongs to (0, vG). When at least
two units remain, bidder 1 bids 0 and the other bidders follow the functionseβ[l,m;G], 1 < l < m, which increase strictly over (0, vG) (by Lemma D1 (v)).

Consequently, the bidder with the lowest value loses all auctions before the

last auction. As he also loses the last auction, where bidders bid their values,

he receives no unit. Efficiency when n = k+1 is proved. When n > k+1, the

bidders with k−1 highest values among the bidders in N\{1} win the k− 1
first auctions, as their bidding functions are strictly increasing (by Lemma

D1 (v)). The bidder with the highest value among all remaining bidders wins
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the kth and last auction. Therefore, the allocation is efficient.

If a bidder wins at price p the auction where l > 2 units and hence

m = n − k + l > 3 bidders remain, he must be the bidder i 6= 1 with the

highest value among the m − 1 remaining bidders different from bidder 1.

Almost surely, the price p is the bid eβ[l,m;G] (v) of the bidder j 6= 1 with the
second highest value v among these bidders. This bidder j will win the next

auction and pay the expected price E
³eβ[l−1,m−1;G] ¡V(2,m−2)

¢ |V(1,m−2) = v
´
,

which, by Lemma D1 (iv), is equal to the current price eβ[l,m;G] (v) = p.

If l = 2 and p = eβ[2,m;G] (v), where v is the price setter’s value, the ex-
pected price at the last auction will be the expectationEeV∼G

³eV(2,m−1)|V(1,m−2) = v
´

of the second highest among the values of all bidders who will remain, which,

by definition of eβ[2,m;G], is equal to eβ[2,m;G] (v). ||
Proof of Lemma 7 (Section 6): For y, k, and n, let δ > 0 be as

in Lemma D2 (ii). Let x, z be as in Lemma 5 (ii) and such that x < y <

z < y + δ ∧ ε and β
[k,n]
MW (z) ≤ y. I may assume full participation at the first

auction, as the strategies become MW’s equilibrium strategy otherwise.

Sequential rationality after the first auction: After losing the first auc-

tion, bidder 1 assumes all other participants at the second auction have

their values iid according to the restriction of F to some interval [0, w], share

the same beliefs G about his own value, and will follow the same strategy

τ
[x,y,z]
i , i 6= 1, under (b.1) (Section 6), which reduces to µ

[G]
i . The distrib-

ution G can only be: the same restriction F |[0,w]; the restriction F |[0,y], in
which case w ∈ [x, z]; the combination γF |[0,x] + (1− γ)F |[x,y] with γ =

2F (x) / (F (x) + F (y)), in which case w = x; or γ0F |[0,y] + (1− γ0)F |[y,z]
with γ0 = 2F (y) / (F (y) + F (z)), in which case w = z. Each possible case

satisfies the assumptions in Lemma D2 (ii). From this lemma, bidder 1 has

no strict incentive to deviate from µ1, which τ
[x,y,z]
1 reduces to.

After bidder i 6= 1 loses the first auction, he assumes all other bidders

j 6= i at the second auction have their values iid according to some restriction

F |[0,w]. Furthermore, when bidder 1 does not participate, bidder i assumes
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that these bidders j will follow MW’s equilibrium strategy from the second

auction on. Therefore, he has no incentive to deviate from this same strategy,

which τ
[x,y,z]
i recommends in this case.

Under the assumption in (b.1) when bidder 1 participates at the second

auction, bidder i assumes that all other participating bidders j 6= 1 will

share his beliefs G about bidder 1’s value. Bidder i therefore assumes that

all these bidders will follow the same strategy µ[G]j , which τ
[x,y,z]
j reduces to.

From Lemma D2 (i), bidder i does not gain by deviating from µ
[G]
i , hence,

nor from τ
[x,y,z]
i .

If the assumption in (b.1) does not hold, the assumption in (b.2) must.

Bidder i assumes all other participating bidders j 6= 1 have their values iid
over an interval [0, w] and share common beliefs G about bidder 1’s value.

Obviously, it is not in bidder i’s best interest to deviate from τ
[x,y,z]
i , as it

recommends he respond optimally. This optimal response is a solution to

a dynamic programming problem with a finite horizon, and its existence

follows from the overall continuity of the problem. As [0, w] is included in

the support of G under (b.2), not even at the auction with l = 2 units and

only bidders 1, i, and j (hence m = 3) can the probability distribution of a

bidder j’s bid have a mass point.

No profitable deviation at the first auction: The proof can proceed as in

the two-unit case. The first-order condition for any bidder with value v /∈
[x, z] and any bidder i 6= 1 with value v in (x, z) is satisfied. Any bidder

i 6= 1 with value x and z is indifferent between losing and winning a tie with
bidder 1 at β[k,n]MW (x) and β

[k,n]
MW (z), respectively. From the condition (1) and

Lemma 5, bidder 1 with value y reaches at the two extremities the maximum

of his payoff over β1’s discontinuity jump. That τ
[x,y,z]
1 , ..., τ

[x,y,z]
n define an

equilibrium follows by supermodularity.

Localized inefficiency at the first auction and martingale property after it:

Along the equilibrium path, the strategies after the first auction become

MW’s equilibrium strategy or are as in Lemma D3. In both cases, the k− 1
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remaining units are allocated efficiently among the remaining bidders. There-

fore, inefficiency only occurs at the first auction, when all k highest values

and bidder 1’s strictly lower value belong to [y, z], where bidder 1 follows a

higher bidding function. (i) is proved. (ii) is another immediate consequence

of Lemma D3. ||
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